12 research outputs found

    Convalescent plasma in patients admitted to hospital with COVID-19 (RECOVERY): a randomised controlled, open-label, platform trial

    Get PDF
    Background: Many patients with COVID-19 have been treated with plasma containing anti-SARS-CoV-2 antibodies. We aimed to evaluate the safety and efficacy of convalescent plasma therapy in patients admitted to hospital with COVID-19. Methods: This randomised, controlled, open-label, platform trial (Randomised Evaluation of COVID-19 Therapy [RECOVERY]) is assessing several possible treatments in patients hospitalised with COVID-19 in the UK. The trial is underway at 177 NHS hospitals from across the UK. Eligible and consenting patients were randomly assigned (1:1) to receive either usual care alone (usual care group) or usual care plus high-titre convalescent plasma (convalescent plasma group). The primary outcome was 28-day mortality, analysed on an intention-to-treat basis. The trial is registered with ISRCTN, 50189673, and ClinicalTrials.gov, NCT04381936. Findings: Between May 28, 2020, and Jan 15, 2021, 11558 (71%) of 16287 patients enrolled in RECOVERY were eligible to receive convalescent plasma and were assigned to either the convalescent plasma group or the usual care group. There was no significant difference in 28-day mortality between the two groups: 1399 (24%) of 5795 patients in the convalescent plasma group and 1408 (24%) of 5763 patients in the usual care group died within 28 days (rate ratio 1·00, 95% CI 0·93–1·07; p=0·95). The 28-day mortality rate ratio was similar in all prespecified subgroups of patients, including in those patients without detectable SARS-CoV-2 antibodies at randomisation. Allocation to convalescent plasma had no significant effect on the proportion of patients discharged from hospital within 28 days (3832 [66%] patients in the convalescent plasma group vs 3822 [66%] patients in the usual care group; rate ratio 0·99, 95% CI 0·94–1·03; p=0·57). Among those not on invasive mechanical ventilation at randomisation, there was no significant difference in the proportion of patients meeting the composite endpoint of progression to invasive mechanical ventilation or death (1568 [29%] of 5493 patients in the convalescent plasma group vs 1568 [29%] of 5448 patients in the usual care group; rate ratio 0·99, 95% CI 0·93–1·05; p=0·79). Interpretation: In patients hospitalised with COVID-19, high-titre convalescent plasma did not improve survival or other prespecified clinical outcomes. Funding: UK Research and Innovation (Medical Research Council) and National Institute of Health Research

    A pseudomolecule‐scale genome assembly of the liverwort Marchantia polymorpha

    Full text link
    Marchantia polymorpha has recently become a prime model for cellular, evo‐devo, synthetic biological, and evolutionary investigations. We present a pseudomolecule‐scale assembly of the M. polymorpha genome, making comparative genome structure analysis and classical genetic mapping approaches feasible. We anchored 88% of the M. polymorpha draft genome to a high‐density linkage map resulting in eight pseudomolecules. We found that the overall genome structure of M. polymorpha is in some respects different from that of the model moss Physcomitrella patens. Specifically, genome collinearity between the two bryophyte genomes and vascular plants is limited, suggesting extensive rearrangements since divergence. Furthermore, recombination rates are greatest in the middle of the chromosome arms in M. polymorpha like in most vascular plant genomes, which is in contrast with P. patens where recombination rates are evenly distributed along the chromosomes. Nevertheless, some other properties of the genome are shared with P. patens. As in P. patens, DNA methylation in M. polymorpha is spread evenly along the chromosomes, which is in stark contrast with the angiosperm model Arabidopsis thaliana, where DNA methylation is strongly enriched at the centromeres. Nevertheless, DNA methylation and recombination rate are anticorrelated in all three species. Finally, M. polymorpha and P. patens centromeres are of similar structure and marked by high abundance of retroelements unlike in vascular plants. Taken together, the highly contiguous genome assembly we present opens unexplored avenues for M. polymorpha research by linking the physical and genetic maps, making novel genomic and genetic analyses, including map‐based cloning, feasible

    Limits on inelastic dark matter from ZEPLIN-III

    Get PDF
    We present limits on the WIMP-nucleon cross section for inelastic dark matter derived from the 2008 run of ZEPLIN-III. Cuts, notably on scintillation pulse shape and scintillation-to-ionisation ratio, give a net exposure of 63 kg.days in the range 20-80keV nuclear recoil energy, in which 6 events are observed. Upper limits on signal rate are derived from the maximum empty patch in the data. Under standard halo assumptions a small region of parameter space consistent, at 99% CL, with causing the 1.17 ton.year DAMA modulation signal is allowed at 90% CL: it is in the mass range 45-60 GeV with a minimum CL of 88%, again derived from the maximum patch. This is the tightest constraint on that explanation of the DAMA result yet presented using a xenon target.Comment: 4 pages, 5 figures. Updated with 1.17 ton.year DAMA results

    Genetic, epigenetic and genomic effects on variation of gene expression among grape varieties

    No full text
    The transcriptional regulatory structure of plant genomes is still relatively unexplored and little is known about factors that influence expression variation in plants. We used a genetic system consisting of 10 heterozygous grape varieties with high consanguinity and high haplotypic diversity to: (i) identify regions of haplotype sharing through whole genome resequencing and SNP genotyping; (ii) analyse gene expression through RNA-seq in four stages of berry development; (iii) associate gene expression variation with genetic and epigenetic properties. We found that haplotype sharing in and around genes was positively correlated with similarity in expression and negatively correlated with the fraction of differentially expressed genes. Genetic and epigenetic properties of the gene and the surrounding region showed significant effects on the extent of expression variation, with negative associations for the level of gene body methylation and the mean expression level and positive ones for nucleotide diversity, structural diversity and ratio of non-synonymous to synonymous nucleotide diversity. We also observed a spatial dependency of covariation of gene expression among varieties. These results highlight relevant roles for cis-acting factors, selective constraints and epigenetic features of the gene and the regional context in which the gene is located in the determination of expression variation. This article is protected by copyright. All rights reserved
    corecore