27 research outputs found

    CMB polarization power spectra contributions from a network of cosmic strings

    Get PDF
    We present the first calculation of the possible (local) cosmic string contribution to the cosmic microwave background polarization spectra from simulations of a string network (rather than a stochastic collection of unconnected string segments). We use field-theory simulations of the Abelian Higgs model to represent local U(1) strings, including their radiative decay and microphysics. Relative to previous estimates, our calculations show a shift in power to larger angular scales, making the chance of a future cosmic string detection from the B-mode polarization slightly greater. We explore a future ground-based polarization detector, taking the CLOVER project as our example. In the null hypothesis (that cosmic strings make a zero contribution) we find that CLOVER should limit the string tension mu to G mu < 0.12x10(-6) (where G is the gravitational constant), above which it is likely that a detection would be possible

    Cosmic string Y-junctions: a comparison between field theoretic and Nambu-Goto dynamics

    Get PDF
    We explore the formation of cosmic string Y-junctions when strings of two different types collide, which has recently become important since string theory can yield cosmic strings of distinct types. Using a model containing two types of local U(1) string and stable composites, we simulate the collision of two straight strings and investigate whether the dynamics matches that previously obtained using the Nambu-Goto action, which is not strictly valid close to the junction. We find that the Nambu-Goto action performs only moderately well at predicting when the collision results in the formation of a pair of Y-junctions (with a composite string connecting them). However, we find that when they do form, the late time dynamics matches those of the Nambu-Goto approximation very closely. We also see little radiative emission from the Y-junction system, which suggests that radiative decay due to bridge formation does not appear to be a means via which a cosmological network of such string would rapidly lose energy.Comment: 17 pages, 17 figures; typo correctio

    Detecting and distinguishing topological defects in future data from the CMBPol satellite

    Get PDF
    The proposed CMBPol mission will be able to detect the imprint of topological defects on the CMB provided the contribution is sufficiently strong. We quantify the detection threshold for cosmic strings and for textures, and analyze the satellite's ability to distinguish between these different types of defects. We also assess the level of danger of misidentification of a defect signature as from the wrong defect type or as an effect of primordial gravitational waves. A 0.002 fractional contribution of cosmic strings to the CMB temperature spectrum at multipole ten, and similarly a 0.001 fractional contribution of textures, can be detected and correctly identified at the 3 level. We also confirm that a tensor contribution of r=0.0018 can be detected at over 3, in agreement with the CMBPol mission concept study. These results are supported by a model selection analysis

    Abelian Higgs Cosmic Strings: Small Scale Structure and Loops

    Get PDF
    Classical lattice simulations of the Abelian Higgs model are used to investigate small scale structure and loop distributions in cosmic string networks. Use of the field theory ensures that the small-scale physics is captured correctly. The results confirm analytic predictions of Polchinski & Rocha [1] for the two-point correlation function of the string tangent vector, with a power law from length scales of order the string core width up to horizon scale with evidence to suggest that the small scale structure builds up from small scales. An analysis of the size distribution of string loops gives a very low number density, of order 1 per horizon volume, in contrast with Nambu-Goto simulations. Further, our loop distribution function does not support the detailed analytic predictions for loop production derived by Dubath et al. [2]. Better agreement to our data is found with a model based on loop fragmentation [3], coupled with a constant rate of energy loss into massive radiation. Our results show a strong energy loss mechanism which allows the string network to scale without gravitational radiation, but which is not due to the production of string width loops. From evidence of small scale structure we argue a partial explanation for the scale separation problem of how energy in the very low frequency modes of the string network is transformed into the very high frequency modes of gauge and Higgs radiation. We propose a picture of string network evolution which reconciles the apparent differences between Nambu-Goto and field theory simulations.Comment: 16 pages, 17 figure

    CMB power spectra from cosmic strings: predictions for the Planck satellite and beyond

    Get PDF
    We present a significant improvement over our previous calculations of the cosmic string contribution to cosmic microwave background (CMB) power spectra, with particular focus on sub-WMAP angular scales. These smaller scales are relevant for the now-operational Planck satellite and additional sub-orbital CMB projects that have even finer resolutions. We employ larger Abelian Higgs string simulations than before and we additionally model and extrapolate the statistical measures from our simulations to smaller length scales. We then use an efficient means of including the extrapolations into our Einstein-Boltzmann calculations in order to yield accurate results over the multipole range 2 < l 3000 in the case of the temperature power spectrum, which then allows cautious extrapolation to even smaller scales. We find that a string contribution to the temperature power spectrum making up 10% of power at l=10 would be larger than the Silk-damped primary adiabatic contribution for l > 3500. Astrophysical contributions such as the Sunyaev-Zeldovich effect also become important at these scales and will reduce the sensitivity to strings, but these are potentially distinguishable by their frequency-dependence.Comment: 18 pages, 16 figure

    CMB power spectrum contribution from cosmic strings using field-evolution simulations of the Abelian Higgs model

    Get PDF
    We present the first field-theoretic calculations of the contribution made by cosmic strings to the temperature power spectrum of the cosmic microwave background (CMB). Unlike previous work, in which strings were modeled as idealized one-dimensional objects, we evolve the simplest example of an underlying field theory containing local U(1) strings, the Abelian Higgs model. Limitations imposed by finite computational volumes are overcome using the scaling property of string networks and a further extrapolation related to the lessening of the string width in comoving coordinates. The strings and their decay products, which are automatically included in the field theory approach, source metric perturbations via their energy-momentum tensor, the unequal-time correlation functions of which are used as input into the CMB calculation phase. These calculations involve the use of a modified version of CMBEASY, with results provided over the full range of relevant scales. We find that the string tension μ\mu required to normalize to the WMAP 3-year data at multipole =10\ell = 10 is Gμ=[2.04±0.06(stat.)±0.12(sys.)]×106G\mu = [2.04\pm0.06\textrm{(stat.)}\pm0.12\textrm{(sys.)}] \times 10^{-6}, where we have quoted statistical and systematic errors separately, and GG is Newton's constant. This is a factor 2-3 higher than values in current circulation.Comment: 23 pages, 14 figures; further optimized figures for 1Mb size limit, appendix added before submission to journal, matches accepted versio

    Fitting CMB data with cosmic strings and inflation

    Get PDF
    We perform a multi-parameter likelihood analysis to compare measurements of the cosmic microwave background (CMB) power spectra with predictions from models involving cosmic strings. We explore the addition of strings to the inflationary concordance model, involving an adiabatic primordial power spectrum with a power-law tilt n, as well as the Harrison-Zeldovich (HZ) case n=1. Using ACBAR, BOOMERANG, CBI, VSA and WMAP data we show that of the models investigated, the HZ case with strings provides the best fit to the data relative to the freedom in the model, having a moderately higher Bayesian evidence than the concordance model. For HZ plus strings, CMB data then implies a (10+/-3)% string contribution to the temperature power spectrum at multipole l=10. However, with non-CMB data included, finite tilt and finite strings are approximately on par with each other. Considering variable ns\\\\ns, we then find a 95% upper limit of the string fraction of 11%, corresponding to $G\\\\m

    On the stability of Cosmic String Y-junctions

    Get PDF
    We study the evolution of non-periodic cosmic string loops containing Y-junctions, such as may form during the evolution of a network of (p,q) cosmic superstrings. We set up and solve the Nambu-Goto equations of motion for a loop with junctions, focusing attention on a specific static and planar initial loop configuration. After a given time, the junctions collide and the Nambu-Goto description breaks down. We also study the same loop configuration in a U(1)xU(1) field theory model that allows composite vortices with corresponding Y-junctions. We show that the field theory and Nambu-Goto evolution are remarkably similar until the collision time. However, in the field theory evolution a new phenomenon occurs: the composite vortices can unzip, producing in the process new Y-junctions, whose separation may grow significantly, destabilizing the configuration. In particular, an initial loop with two Y-junctions may evolve to a configuration with six Y-junctions (all distant from each other). Setting up this new configuration as an initial condition for Nambu Goto strings, we solve for its evolution and establish conditions under which it is stable to the decay mode seen in the field theory case. Remarkably, the condition closely matches that seen in the field theory simulations, and is expressed in terms of simple parameters of the Nambu-Goto system. This implies that there is an easy way to understand the instability in terms of which region of parameter space leads to stable or unstable unzippings.Comment: 16 pages, 11 figures, typos correcte

    On the degeneracy between primordial tensor modes and cosmic strings in future CMB data from Planck

    Get PDF
    While observations indicate that the predominant source of cosmic inhomogeneities are adiabatic perturbations, there are a variety of candidates to provide auxiliary trace effects, including inflation-generated primordial tensors and cosmic defects which both produce B-mode cosmic microwave background (CMB) polarization. We investigate whether future experiments may suffer confusion as to the true origin of such effects, focusing on the ability of Planck to distinguish tensors from cosmic strings, and show that there is no significant degeneracy.Comment: 4 pages, 3 figures. Minor changes to match published versio
    corecore