593 research outputs found

    Quality of Life and Autonomy in Emerging Adults with Early‐Onset Neuromuscular Disorders

    Full text link
    Emerging adulthood is an important period in the development of one’s identity and autonomy. The ways in which identity and autonomy are viewed by emerging adults and how they impact quality of life (QoL) in individuals with early‐onset neuromuscular conditions is not yet known. This study focused on understanding and exploring relationships between self‐perceptions of emerging adulthood, autonomy, and QoL. Five previously validated measures were incorporated into an online survey and distributed to young adults with early‐onset neuromuscular conditions and unaffected controls. Topics explored included individuals’ views regarding their overall QoL, disease‐specific QoL, components of emerging adulthood, and autonomy. We found that a sense of higher disease impact was associated with a lower Overall General QoL. Additionally, perceptions of key autonomy factors “negativity” and “instability” were uniquely associated with Overall General QoL in the case group as compared to controls, whereas “attitudinal autonomy” (attaining the ability to plan and follow through with goals) was important to this age group regardless of health status. The specific factors of emerging adulthood and autonomy that were significantly correlated with Overall General QoL can be used for developing targeted counseling and interventions to improve QoL for individuals and their families.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/146967/1/jgc40713.pd

    Application of Otolith Chemical Signatures to Estimate Population Connectivity of Red Snapper In the Western Gulf of Mexico

    Get PDF
    Otolith chemical signatures of Red Snapper Lutjanus campechanus from six nursery regions were used to estimate the sources of recruits to four sampling regions in the western Gulf of Mexico (Gulf) and to estimate whether postsettlement mixing of Red Snapper occurs between the U.S. and Mexican portions of the western Gulf. In a previous study, region-specific otolith signatures (element : Ca ratios: Ba:Ca, Mg:Ca, Mn:Ca, Sr:Ca, and Li:Ca; stable isotope delta values: δ13C and δ18O) were developed based on age-0 Red Snapper (2005–2007 year-classes) sampled from the six nursery areas. In the present study, subadult and adult Red Snapper (ages 1–3) belonging to those same year-classes were collected from four sampling regions within the western Gulf (two regions in U.S. waters; two regions along the Mexican continental shelf) during summer in 2006–2008. Left sagittal otoliths were used to age subadults and adults to the corresponding nursery year-classes, and right sagittal otoliths were cored for chemical analysis. Off the southwestern U.S. coast, the sampled age-1–3 Red Snapper included locally derived recruits as well as recruits from the northwestern Gulf nursery region. However, analytical results were inconclusive with respect to estimating the connectivity between Red Snapper populations in U.S. and Mexican waters of the western Gulf

    Cross-Generational Reproductive Fitness Enforced by Microchimeric Maternal Cells

    Get PDF
    SummaryExposure to maternal tissue during in utero development imprints tolerance to immunologically foreign non-inherited maternal antigens (NIMA) that persists into adulthood. The biological advantage of this tolerance, conserved across mammalian species, remains unclear. Here, we show maternal cells that establish microchimerism in female offspring during development promote systemic accumulation of immune suppressive regulatory T cells (Tregs) with NIMA specificity. NIMA-specific Tregs expand during pregnancies sired by males expressing alloantigens with overlapping NIMA specificity, thereby averting fetal wastage triggered by prenatal infection and non-infectious disruptions of fetal tolerance. Therefore, exposure to NIMA selectively enhances reproductive success in second-generation females carrying embryos with overlapping paternally inherited antigens. These findings demonstrate that genetic fitness, canonically thought to be restricted to Mendelian inheritance, is enhanced in female placental mammals through vertically transferred maternal cells that promote conservation of NIMA and enforce cross-generational reproductive benefits

    Antenatal steroid exposure and heart rate variability in adolescents born with very low birth weight

    Get PDF
    Reduced heart rate variability (HRV) suggests autonomic imbalance in the control of heart rate and is associated with unfavorable cardiometabolic outcomes. We examined whether antenatal corticosteroid (ANCS) exposure had long-term programming effects on heart rate variability (HRV) in adolescents born with very low birth weight (VLBW)

    Antenatal corticosteroids and the renin-angiotensin-aldosterone system in adolescents born preterm

    Get PDF
    Antenatal corticosteroid (ANCS) treatment hastens fetal lung maturity and improves survival of premature infants, but the long-term effects of ANCS are not well-described. Animal models suggest ANCS increases the risk of cardiovascular disease through programmed changes in the renin-angiotensin (Ang)-aldosterone system (RAAS). We hypothesized that ANCS exposure alters the RAAS in adolescents born prematurely

    Myocardin-Related Transcription Factors A and B Are Key Regulators of TGF-β1-Induced Fibroblast to Myofibroblast Differentiation

    Get PDF
    Myofibroblasts are contractile, smooth muscle-like cells that are characterized by the de novo expression of smooth muscle ι-actin (SMιA) and normally function to assist in wound closure, but have been implicated in pathological contractures. Transforming growth factor β-1 (TGF-β1) helps facilitate the differentiation of fibroblasts into myofibroblasts, but the exact mechanism by which this differentiation occurs, in response to TGF-β1, remains unclear. Myocardin-related transcription factors A and B (MRTFs, MRTF-A/B) are transcriptional co-activators that regulate the expression of smooth muscle-specific cytoskeletal proteins, including SMιA, in smooth muscle cells and fibroblasts. In this study, we demonstrate that TGF-β1 mediates myofibroblast differentiation and the expression of a contractile gene program through the actions of the MRTFs. Transient transfection of a constitutively active MRTF-A induced an increase in the expression of SMιA and other smooth muscle-specific cytoskeletal proteins, and an increase in myofibroblast contractility, even in the absence of TGF-β1. MRTF-A/B knockdown, in TGF-β1-differentiated myofibroblasts, resulted in decreased smooth muscle-specific cytoskeletal protein expression levels and reduced contractile force generation, as well as a decrease in focal adhesion size and number. These results provide direct evidence that the MRTFs are mediators of myofibroblast differentiation in response to TGF-β1

    Mixmaster Behavior in Inhomogeneous Cosmological Spacetimes

    Get PDF
    Numerical investigation of a class of inhomogeneous cosmological spacetimes shows evidence that at a generic point in space the evolution toward the initial singularity is asymptotically that of a spatially homogeneous spacetime with Mixmaster behavior. This supports a long-standing conjecture due to Belinskii et al. on the nature of the generic singularity in Einstein's equations.Comment: 4 pages plus 4 figures. A sentence has been deleted. Accepted for publication in PR

    Detection of Reflection Features in the Neutron Star Low-Mass X-Ray Binary Serpens X-1 with NICER

    Get PDF
    We present Neutron Star Interior Composition Explorer (NICER) observations of the neutron star (NS) low-mass X-ray binary Serpens X-1 during the early mission phase in 2017. With the high spectral sensitivity and low-energy X-ray passband of NICER, we are able to detect the Fe L line complex in addition to the signature broad, asymmetric Fe K line. We confirm the presence of these lines by comparing the NICER data to archival observations with XMM-Newton/Reflection Grating Spectrometer (RGS) and NuSTAR. Both features originate close to the innermost stable circular orbit (ISCO). When modeling the lines with the relativistic line model relline, we find that the Fe L blend requires an inner disk radius of 1.4 [superscript +0.2][subscript -0.01] R ISCO and Fe K is at 1.03[superscript +0.13][subscript -0.03]R ISCO (errors quoted at 90%). This corresponds to a position of 17.3[superscript +2.5][subscript -0.1] km and 12.7[superscript +1.6][subscript -0.04] km for a canonical NS mass (M[subscript NS] = 1.4 M[superscript ⨀]) and dimensionless spin value of a = 0. Additionally, we employ a new version of the relxill model tailored for NSs and determine that these features arise from a dense disk and supersolar Fe abundance
    • …
    corecore