4,874 research outputs found

    Learning through peer assessment: The league table approach

    Get PDF
    Signpost 12, Northumbria University Signpost Serie

    A Manifesto for the Equifinality Thesis.

    Get PDF
    This essay discusses some of the issues involved in the identification and predictions of hydrological models given some calibration data. The reasons for the incompleteness of traditional calibration methods are discussed. The argument is made that the potential for multiple acceptable models as representations of hydrological and other environmental systems (the equifinality thesis) should be given more serious consideration than hitherto. It proposes some techniques for an extended GLUE methodology to make it more rigorous and outlines some of the research issues still to be resolved

    Models of everywhere revisited: a technological perspective

    Get PDF
    The concept ‘models of everywhere’ was first introduced in the mid 2000s as a means of reasoning about the environmental science of a place, changing the nature of the underlying modelling process, from one in which general model structures are used to one in which modelling becomes a learning process about specific places, in particular capturing the idiosyncrasies of that place. At one level, this is a straightforward concept, but at another it is a rich multi-dimensional conceptual framework involving the following key dimensions: models of everywhere, models of everything and models at all times, being constantly re-evaluated against the most current evidence. This is a compelling approach with the potential to deal with epistemic uncertainties and nonlinearities. However, the approach has, as yet, not been fully utilised or explored. This paper examines the concept of models of everywhere in the light of recent advances in technology. The paper argues that, when first proposed, technology was a limiting factor but now, with advances in areas such as Internet of Things, cloud computing and data analytics, many of the barriers have been alleviated. Consequently, it is timely to look again at the concept of models of everywhere in practical conditions as part of a trans-disciplinary effort to tackle the remaining research questions. The paper concludes by identifying the key elements of a research agenda that should underpin such experimentation and deployment

    Distributed lag models for hydrological data

    Get PDF
    The distributed lag model (DLM), used most prominently in air pollution studies, finds application wherever the effect of a covariate is delayed and distributed through time. We explore the use of modified formulations of DLMs to provide flexible varying-coeficient models with smoothness constraints, applicable in any setting in which lagged covariates are regressed on a time-dependent response. The models are applied to simulated flow and rainfall data and to flow data from a Scottish mountain river, with particular emphasis on approximating the relationship between environmental covariates and flow regimes in order to detect the influence of unobserved processes. It was found that under certain rainfall conditions some of the variability in the influence of rainfall on flow arises through a complex interaction between antecedent ground wetness and the time-delay in rainfall. The models are able to identify subtle changes in rainfall response, particularly in the location of peak influence in the lag structure and offer a computationally attractive approach for fitting DLMs

    Using the interpersonal reactivity index to assess empathy in violent offenders

    Get PDF
    The Interpersonal Reactivity Index (IRI), developed by Davis (1980), provides an excellent multidimensional measure of empathy for the general adult population, the domain for which it was developed. Its use has subsequently expanded into other areas, for example criminal psychology. In this domain empathy is a critical variable in theoretical accounts of criminality and particularly of violence. For many researchers within the field of criminal psychology, the IRI has become the instrument of choice for the assessment of empathy. However, the psychometric properties of the scale, when used with a criminal population, have not been investigated. This paper reports the results of an investigation into the reliability and component structure of the IRI using a sample of violent offenders. The Personal Distress subscale was found not to be reliable when used in an offender population. Furthermore, when used to assess offenders, principle components analysis did not confirm the four-subscale structure of the IRI. Possible explanations for these findings are discussed in relation to offender assessment in general

    What we see now: event-persistence and the predictability of hydro-eco-geomorphological systems

    Get PDF
    What we see now in the landscape is the result of a long history of events with varying degrees of persistence. We have only limited access to much of that history and we know that many current events have only a minimal impact on what we see. Even rather extreme events may have impacts that are not very long-lasting but can have the effect of changing the antecedent states for future events. That means that sampling of sequences of events might be important in understanding the evolution of the catchments. In some cases, however, extreme events can have an impact on the system that persists over hundreds or thousands of years. Any evolution of the landscape is then constrained by those past events, however much it might be also constrained by self-organisational principles. It might be difficult to verify those principles given the epistemic uncertainties about past histories and system properties that are generic to the studies that are possible within a research project or career. These arguments are investigated in a simple slab model of landslip failures in a hillslope hollow subject to stochastic forcing over long periods of time. The complementarity of an event-persistence approach to hydro-eco-geomorphological systems is captured in suggestions for future research questions

    How far can we go in distributed hydrological modelling?

    No full text
    International audienceThis paper considers distributed hydrological models in hydrology as an expression of a pragmatic realism. Some of the problems of distributed modelling are discussed including the problem of nonlinearity, the problem of scale, the problem of equifinality, the problem of uniqueness and the problem of uncertainty. A structure for the application of distributed modelling is suggested based on an uncertain or fuzzy landscape space to model space mapping. This is suggested as the basis for an Alternative Blueprint for distributed modelling in the form of an application methodology. This Alternative Blueprint is scientific in that it allows for the formulation of testable hypotheses. It focuses attention on the prior evaluation of models in terms of physical realism and on the value of data in model rejection. Finally, some unresolved questions that distributed modelling must address in the future are outlined, together with a vision for distributed modelling as a means of learning about places

    How to make advances in hydrological modelling

    Get PDF
    After some background about what I have learned from a career in hydrological modelling, I present some opinions about how we might make progress in improving hydrological models in future, including how to decide whether a model is fit for purpose; how to improve process representations in hydrological models; and how to take advantage of Models of Everywhere. Underlying all those issues, however, is the fundamental problem of improving the hydrological data available for both forcing and evaluating hydrological models. It would be a major advance if the hydrological community could come together to prioritise and commission the new observational methods that are required to make real progress
    corecore