2 research outputs found

    ilastik: interactive machine learning for (bio)image analysis

    Get PDF
    We present ilastik, an easy-to-use interactive tool that brings machine-learning-based (bio)image analysis to end users without substantial computational expertise. It contains pre-defined workflows for image segmentation, object classification, counting and tracking. Users adapt the workflows to the problem at hand by interactively providing sparse training annotations for a nonlinear classifier. ilastik can process data in up to five dimensions (3D, time and number of channels). Its computational back end runs operations on-demand wherever possible, allowing for interactive prediction on data larger than RAM. Once the classifiers are trained, ilastik workflows can be applied to new data from the command line without further user interaction. We describe all ilastik workflows in detail, including three case studies and a discussion on the expected performance

    Deep learning-enhanced light-field imaging with continuous validation

    No full text
    Light field microscopy (LFM) has emerged as a powerful tool for fast volumetric image acquisition in biology, but its effective throughput and widespread use has been hampered by a computationally demanding and artefact-prone image reconstruction process. Here, we present a novel framework consisting of a hybrid light-field light-sheet microscope and deep learning-based volume reconstruction, where single light-sheet acquisitions continuously serve as training data and validation for the convolutional neural network reconstructing the LFM volume. Our network delivers high-quality reconstructions at video-rate throughput and we demonstrate the capabilities of our approach by imaging medaka heart dynamics and zebrafish neural activity
    corecore