1,702 research outputs found

    Rotational Structure and Outflow in the Infrared Dark Cloud 18223-3

    Full text link
    We examine an Infrared Dark Cloud (IRDC) at high spatial resolution as a means to study rotation, outflow, and infall at the onset of massive star formation. Submillimeter Array observations combined with IRAM 30 meter data in 12CO(2--1) reveal the outflow orientation in the IRDC 18223-3 region, and PdBI 3 mm observations confirm this orientation in other molecular species. The implication of the outflow's presence is that an accretion disk is feeding it, so using high density tracers such as C18O, N2H+, and CH3OH, we looked for indications of a velocity gradient perpendicular to the outflow direction. Surprisingly, this gradient turns out to be most apparent in CH3OH. The large size (28,000 AU) of the flattened rotating object detected indicates that this velocity gradient cannot be due solely to a disk, but rather from inward spiraling gas within which a Keplerian disk likely exists. From the outflow parameters, we derive properties of the source such as an outflow dynamical age of ~37,000 years, outflow mass of ~13 M_sun, and outflow energy of ~1.7 x 10^46 erg. While the outflow mass and energy are clearly consistent with a high-mass star forming region, the outflow dynamical age indicates a slightly more evolved evolutionary stage than previous spectral energy distribution (SED) modeling indicates. The calculated outflow properties reveal that this is truly a massive star in the making. We also present a model of the observed methanol velocity gradient. The rotational signatures can be modeled via rotationally infalling gas. These data present evidence for one of the youngest known outflow/infall/disk systems in massive star formation. A tentative evolutionary picture for massive disks is discussed.Comment: 11 pages, 9 figures. Accepted for publication in A&A. Figures 2,3,6, and 9 are available at higher resolution by email or in the journal publicatio

    Multiple outflows in IRAS 19410+2336

    Full text link
    PdBI high-spatial resolution CO observations combined with near-infrared H2 data disentangle at least 7 (maybe even 9) molecular outflows in the massive star-forming region IRAS19410+2336. Position-velocity diagrams of the outflows reveal Hubble-like relationships similar to outflows driven by low-mass objects. Estimated accretion rates are of the order 10^-4 Msun/yr, sufficiently high to overcome the radiation pressure and form massive stars via disk-mediated accretion processes. The single-dish large-scale mm continuum cores fragment into several compact condensations at the higher spatial resolution of the PdBI which is expected due to the clustering in massive star formation. While single-dish data give a simplified picture of the source, sufficiently high spatial resolution resolves the structures into outflows resembling those of low-mass star-forming cores. We interpret this as further support for the hypothesis that massive stars do form via disk-accretion processes similar to low-mass stars.Comment: 10 pages, 4 figures, higher resolution version of images at http://cfa-www.harvard.edu/~hbeuther/. A&A, accepte

    Circumventing the radiation pressure barrier in the formation of massive stars via disk accretion

    Full text link
    We present radiation hydrodynamics simulations of the collapse of massive pre-stellar cores. We treat frequency dependent radiative feedback from stellar evolution and accretion luminosity at a numerical resolution down to 1.27 AU. In the 2D approximation of axially symmetric simulations, it is possible for the first time to simulate the whole accretion phase (up to the end of the accretion disk epoch) for the forming massive star and to perform a broad scan of the parameter space. Our simulation series show evidently the necessity to incorporate the dust sublimation front to preserve the high shielding property of massive accretion disks. While confirming the upper mass limit of spherically symmetric accretion, our disk accretion models show a persistent high anisotropy of the corresponding thermal radiation field. This yields to the growth of the highest-mass stars ever formed in multi-dimensional radiation hydrodynamics simulations, far beyond the upper mass limit of spherical accretion. Non-axially symmetric effects are not necessary to sustain accretion. The radiation pressure launches a stable bipolar outflow, which grows in angle with time as presumed from observations. For an initial mass of the pre-stellar host core of 60, 120, 240, and 480 Msun the masses of the final stars formed in our simulations add up to 28.2, 56.5, 92.6, and at least 137.2 Msun respectively.Comment: 55 pages, 24 figures, accepted at Ap

    Magnetic field structure in a high-mass outflow/disk system

    Full text link
    To characterize the magnetic field structure of the outflow and core region within a prototypical high-mass star-forming region, we analyzed polarized CO(3-2) - for the first time observed with the Submillimeter Array -- as well as 880mum submm continuum emission from the high-mass outflow/disk system IRAS18089-1732. Both emission features with polarization degrees at a few percent level indicate that the magnetic field structure is largely aligned with the outflow/jet orientation from the small core scales to the larger outflow scales. Although quantitative estimates are crude, the analysis indicates that turbulent energy dominates over magnetic energy. The data also suggest a magnetic field strength increase from the lower-density envelope to the higher-density core.Comment: 4-5 pages, 3 figures, accepted for ApJ

    Hot high-mass accretion disk candidates

    Full text link
    To better understand the physical properties of accretion disks in high-mass star formation, we present a study of a 12 high-mass accretion disk candidates observed at high spatial resolution with the Australia Telescope Compact Array (ATCA) in the NH3 (4,4) and (5,5) lines. Almost all sources were detected in NH3, directly associated with CH3OH Class II maser emission. From the remaining eleven sources, six show clear signatures of rotation and/or infall motions. These signatures vary from velocity gradients perpendicular to the outflows, to infall signatures in absorption against ultracompact HII regions, to more spherical infall signatures in emission. Although our spatial resolution is ~1000AU, we do not find clear Keplerian signatures in any of the sources. Furthermore, we also do not find flattened structures. In contrast to this, in several of the sources with rotational signatures, the spatial structure is approximately spherical with sizes exceeding 10^4 AU, showing considerable clumpy sub-structure at even smaller scales. This implies that on average typical Keplerian accretion disks -- if they exist as expected -- should be confined to regions usually smaller than 1000AU. It is likely that these disks are fed by the larger-scale rotating envelope structure we observe here. Furthermore, we do detect 1.25cm continuum emission in most fields of view.Comment: 21 pages, 32 figures, accepted for ApJS. A high-resolution version can be found at http://www.mpia.de/homes/beuther/papers.htm

    Disk and outflow signatures in Orion-KL: The power of high-resolution thermal infrared spectroscopy

    Full text link
    We used the CRIRES spectrograph on the VLT to study the ro-vibrational 12CO/13CO, the Pfund beta and H2 emission between 4.59 and 4.72mu wavelengths toward the BN object, the disk candidate source n, and a proposed dust density enhancement IRC3. We detected CO absorption and emission features toward all three targets. Toward the BN object, the data partly confirm the results obtained more than 25 years ago by Scoville et al., however, we also identify several new features. While the blue-shifted absorption is likely due to outflowing gas, toward the BN object we detect CO in emission extending in diameter to ~3300AU. Although at the observational spectral resolution limit, the 13CO line width of that feature increases with energy levels, consistent with a disk origin. If one attributes the extended CO emission also to a disk origin, its extent is consistent with other massive disk candidates in the literature. For source n, we also find the blue-shifted CO absorption likely from an outflow. However, it also exhibits a narrower range of redshifted CO absorption and adjacent weak CO emission, consistent with infalling motions. We do not spatially resolve the emission for source n. For both sources we conduct a Boltzmann analysis of the 13CO absorption features and find temperatures between 100 and 160K, and H2 column densities of the order a few times 10^23cm^-2. The observational signatures from IRC3 are very different with only weak absorption against a much weaker continuum source. However, the CO emission is extended and shows wedge-like position velocity signatures consistent with jet-entrainment of molecular gas, potentially associated with the Orion-KL outflow system. We also present and discuss the Pfund beta and H2 emission in the region.Comment: 12 pages, 15 pages, accepted for A&A, you find a high-resolution copy at http://www.mpia-hd.mpg.de/homes/beuther/papers.htm

    Different Evolutionary Stages in the Massive Star Forming Region W3 Main Complex

    Full text link
    We observed three high-mass star-forming regions in the W3 high-mass star formation complex with the Submillimeter Array and IRAM 30 m telescope. These regions, i.e. W3 SMS1 (W3 IRS5), SMS2 (W3 IRS4) and SMS3, are in different evolutionary stages and are located within the same large-scale environment, which allows us to study rotation and outflows as well as chemical properties in an evolutionary sense. While we find multiple mm continuum sources toward all regions, these three sub-regions exhibit different dynamical and chemical properties, which indicates that they are in different evolutionary stages. Even within each subregion, massive cores of different ages are found, e.g. in SMS2, sub-sources from the most evolved UCHII region to potential starless cores exist within 30 000 AU of each other. Outflows and rotational structures are found in SMS1 and SMS2. Evidence for interactions between the molecular cloud and the HII regions is found in the 13CO channel maps, which may indicate triggered star formation.Comment: Accepted for publication in ApJ, 22 pages, 23 figure

    From high-mass starless cores to high-mass protostellar objects

    Full text link
    Aims: Our aim is to understand the evolutionary sequence of high-mass star formation from the earliest evolutionary stage of high-mass starless cores, via high-mass cores with embedded low- to intermediate-mass objects, to finally high-mass protostellar objects. Methods: Herschel far-infrared PACS and SPIRE observations are combined with existing data at longer and shorter wavelengths to characterize the spectral and physical evolution of massive star-forming regions. Results: The new Herschel images spectacularly show the evolution of the youngest and cold high-mass star-forming regions from mid-infrared shadows on the Wien-side of the spectral energy distribution (SED), via structures almost lost in the background emission around 100mum, to strong emission sources at the Rayleigh-Jeans tail. Fits of the SEDs for four exemplary regions covering evolutionary stages from high-mass starless cores to high-mass protostellar objects reveal that the youngest regions can be fitted by single-component black-bodies with temperatures on the order of 17K. More evolved regions show mid-infrared excess emission from an additional warmer component, which however barely contributes to the total luminosities for the youngest regions. Exceptionally low values of the ratio between bolometric and submm luminosity additionally support the youth of the infrared-dark sources. Conclusions: The Herschel observations reveal the spectral and physical properties of young high-mass star-forming regions in detail. The data clearly outline the evolutionary sequence in the images and SEDs. Future work on larger samples as well as incorporating full radiative transfer calculations will characterize the physical nature at the onset of massive star formation in even more depth.Comment: 4 pages, A&A Herschel special issu

    Precursors of UCHII regions & the evolution of massive outflows

    Full text link
    Since this contributions was meant to cover two subjects which are both in the field of massive star formation but which in its details can be discussed separately, this paper is divided in two sections. First, we present characteristics of precursors of UCH{\sc ii} regions and their likely evolutionary properties. The second section discusses massive molecular outflows, their implications for high-mass star formation, and a possible evolutionary sequence for massive outflows.Comment: 15 pages, 4 figures, in the Proceedings to the "Cores to Clusters" meeting held in Porto/Portigal in October 2004. Also available at http://cfa-www.harvard.edu/~hbeuther

    Interferometric multi-wavelength (sub)millimeter continuum study of the young high-mass protocluster IRAS05358+3543

    Full text link
    The young massive star-forming region IRAS05358+3543 was observed at high-spatial resolution in the continuum emission at 3.1 and 1.2mm with the Plateau de Bure Interferometer, and at 875 and 438mum with the Submillimeter Array. We resolve at least four continuum sub-sources that are likely of protostellar nature. Two of them are potentially part of a proto-binary system with a projected separation of 1700AU. Additional (sub)mm continuum peaks are not necessarily harboring protostars but maybe caused by the multiple molecular outflows. The spectral energy distributions (SEDs) of the sub-sources show several features. The main power house mm1, which is associated with CH3OH maser emission, a hypercompact HII region and a mid-infrared source, exhibits a typical SED with a free-free emission component at cm and long mm wavelengths and a cold dust component in the (sub)mm part of the spectrum (spectral index between 1.2mm and 438mum alpha~3.6). The free-free emission corresponds to a Lyman continuum flux of an embedded 13Msun B1 star. The coldest source of the region, mm3, has alpha~3.7 between 1.2mm and 875mum, but has lower than expected fluxes in the shorter wavelength 438mum band. This turnover of the Planck-function sets an upper limit on the dust temperature of mm3 of approximately 20K. The uv-data analysis of the density structure of individual sub-cores reveals distributions with power-law indices between 1.5 and 2. This resembles the density distributions of the larger-scale cluster-forming clump as well as those from typical low-mass cores.Comment: 13 pages, 7 figures, accepted for Astronomy and Astrophysics, a high-resolution version of the paper is also available at http://www.mpia.de/homes/beuther/papers.htm
    • …
    corecore