5 research outputs found

    Analyses of murine GBP homology clusters based on in silico, in vitro and in vivo studies

    Get PDF
    The interactions between pathogens and hosts lead to a massive upregulation of antimicrobial host effector molecules. Among these, the 65 kDa guanylate binding proteins (GBPs) are interesting candidates as intricate components of the host effector molecule repertoire. Members of the GBP family are highly conserved in vertebrates. Previous reports indicate an antiviral activity of human GBP1 (hGBP1) and murine GBP2 (mGBP2). We recently demonstrated that distinct murine GBP (mGBP) family members are highly upregulated upon Toxoplasma gondii infection and localize around the intracellular protozoa T. gondii. Moreover, we characterised five new mGBP family members within the murine 65 kDa GBP family. Here, we identified a new mGBP locus named mGbp11. Based on bacterial artificial chromosome (BAC), expressed sequence tag (EST), and RT-PCR analyses this study provides a detailed insight into the genomic localization and organization of the mGBPs. These analyses revealed a 166-kb spanning region on chromosome 3 harboring five transcribed mGBPs (mGbp1, mGbp2, mGbp3, mGbp5, and mGbp7) and one pseudogene (pseudomGbp1), as well as a 332-kb spanning region on chromosome 5 consisting of six transcribed mGBPs (mGbp4, mGbp6, mGbp8, mGbp9, mGbp10, and mGbp11), and one pseudogene (pseudomgbp2). Besides the strikingly high homology of 65% to 98% within the coding sequences, the mGBPs on chromosome 5 cluster also exhibit a highly homologous exon-intron structure whereas the mGBP on chromosome 3 reveals a more divergent exon-intron structure. This study details the comprehensive genomic organization of mGBPs and suggests that a continuously changing microbial environment has exerted evolutionary pressure on this gene family leading to multiple gene amplifications. A list of links for this article can be found in the Availability and requirements section

    Essential Role of mGBP7 for Survival of Toxoplasma gondii Infection

    No full text
    Guanylate-binding proteins (GBPs) are induced by the inflammatory cytokine interferon gamma (IFN-γ) and have been shown to be important factors in the defense of the intracellular pathogen Toxoplasma gondii. In previous studies, we showed that members of the mouse GBP family, such as mGBP2 and mGBP7, accumulate at the parasitophorous vacuole of T. gondii, which is the replicatory niche of the parasite. In this study, we show that mice deficient in mGBP7 succumb early after infection with T. gondii, showing a complete failure of resistance to the pathogen. On a molecular level, mGBP7 is found directly at the parasite, likely mediating its destruction.Members of the murine guanylate-binding protein family (mGBP) are induced by interferon gamma (IFN-γ) and have been shown to be important factors in cell-autonomous immunity toward the intracellular pathogen Toxoplasma gondii. Previously, we identified that mGBP2 mediates disruption of the parasitophorous vacuole membrane (PVM) and directly assaults the plasma membrane of the parasite. Here, we show that mGBP7-deficient mice are highly susceptible to T. gondii infection. This is demonstrated by the loss of parasite replication control, pronounced development of ascites, and death of the animals in the acute infection phase. Interestingly, live-cell microscopy revealed that mGBP7 recruitment to the PVM occurs after mGBP2 recruitment, followed by disruption of the PVM and T. gondii integrity and accumulation of mGBP7 inside the parasite. This study defines mGBP7 as a crucial effector protein in resistance to intracellular T. gondii
    corecore