190 research outputs found

    Adaptive latitudinal cline of photoperiodic diapause induction in the parasitoid <i>Nasonia vitripennis</i> in Europe

    Get PDF
    Living in seasonally changing environments requires adaptation to seasonal cycles. Many insects use the change in day length as a reliable cue for upcoming winter and respond to shortened photoperiod through diapause. In this study, we report the clinal variation in photoperiodic diapause induction in populations of the parasitoid wasp Nasonia vitripennis collected along a latitudinal gradient in Europe. In this species, diapause occurs in the larval stage and is maternally induced. Adult Nasonia females were exposed to different photoperiodic cycles and lifetime production of diapausing offspring was scored. Females switched to the production of diapausing offspring after exposure to a threshold number of photoperiodic cycles. A latitudinal cline was found in the proportion of diapausing offspring, the switch point for diapause induction measured as the maternal age at which the female starts to produce diapausing larvae, and the critical photoperiod for diapause induction. Populations at northern latitudes show an earlier switch point, higher proportions of diapausing individuals and longer critical photoperiods. Since the photoperiodic response was measured under the same laboratory conditions, the observed differences between populations most likely reflect genetic differences in sensitivity to photoperiodic cues, resulting from local adaptation to environmental cycles. The observed variability in diapause response combined with the availability of genomic tools for N. vitripennis represent a good opportunity to further investigate the genetic basis of this adaptive trait.

    Leeftijdsdiscriminatie op de Arbeidsmarkt in de Wervings- en selectiefase: Een verkenning van verboden leeftijd-gerelateerd taalgebruik in vacatureteksten

    Get PDF
    In 2014 presenteerde het kabinet het Actieplan arbeidsmarktdiscriminatie, dat is gericht op het voorkomen en bestrijden van discriminatie op de arbeidsmarkt. Onderdeel van dit actieplan is het uitvoeren van onderzoek om de aard en omvang van discriminatie op de arbeidsmarkt inzichtelijk te krijgen. Met het huidige onderzoek naar leeftijdsdiscriminatie op de arbeidsmarkt beogen wij daar een bijdrage aan te leveren. Dit onderzoek is uitgevoerd in opdracht van het Ministerie van Sociale Zaken en Werkgelegenheid en is gericht op leeftijdsdiscriminatie in de wervings- en selectiefase. Meer specifiek kijken we naar het gebruik van verboden leeftijds- gerelateerde woorden en formuleringen in vacatureteksten

    DNA methylation plays a crucial role during early <i>Nasonia</i> development

    Get PDF
    Although the role of DNA methylation in insect development is still poorly understood, the number and role of DNA methyltransferases in insects vary strongly between species. DNA methylation appears to be widely present among the social hymenoptera and functional studies in Apis have suggested a crucial role for de novo methylation in a wide variety of developmental processes. The sequencing of three parasitoid Nasonia genomes revealed the presence of three Dnmt1 (Dnmt1a, Dnmt1b and Dnmt1c) genes and one Dnmt2 and Dnmt3 gene, suggesting a role of DNA methylation in Nasonia development. In the present study we show that in Nasonia vitripennis all Dnmt1 messenger RNAs (mRNAs) and Dnmt3 mRNA are maternally provided to the embryo and, of these, Dnmt1a is essential during early embryogenesis. Lowering of maternal Dnmt1a mRNA results in embryonic lethality during the onset of gastrulation. This dependence on maternal Dnmt1a during embryogenesis in an organismal group outside the vertebrates, suggests evolutionary conservation of the function of Dnmt1 during embryogenesis.</p

    Diploid males support a two-step mechanism of endosymbiont-induced thelytoky in a parasitoid wasp.

    Get PDF
    BACKGROUND: Haplodiploidy, where females develop from diploid, fertilized eggs and males from haploid, unfertilized eggs, is abundant in some insect lineages. Some species in these lineages reproduce by thelytoky that is caused by infection with endosymbionts: infected females lay haploid eggs that undergo diploidization and develop into females, while males are very rare or absent. It is generally assumed that in thelytokous wasps, endosymbionts merely diploidize the unfertilized eggs, which would then trigger female development. RESULTS: We found that females in the parasitoid wasp Asobara japonica infected with thelytoky-inducing Wolbachia produce 0.7-1.2 % male offspring. Seven to 39 % of these males are diploid, indicating that diploidization and female development can be uncoupled in A. japonica. Wolbachia titer in adults was correlated with their ploidy and sex: diploids carried much higher Wolbachia titers than haploids, and diploid females carried more Wolbachia than diploid males. Data from introgression lines indicated that the development of diploid individuals into males instead of females is not caused by malfunction-mutations in the host genome but that diploid males are most likely produced when the endosymbiont fails to activate the female sex determination pathway. Our data therefore support a two-step mechanism by which endosymbionts induce thelytoky in A. japonica: diploidization of the unfertilized egg is followed by feminization, whereby each step correlates with a threshold of endosymbiont titer during wasp development. CONCLUSIONS: Our new model of endosymbiont-induced thelytoky overthrows the view that certain sex determination mechanisms constrain the evolution of endosymbiont-induced thelytoky in hymenopteran insects. Endosymbionts can cause parthenogenesis through feminization, even in groups in which endosymbiont-diploidized eggs would develop into males following the hosts' sex determination mechanism. In addition, our model broadens our understanding of the mechanisms by which endosymbionts induce thelytoky to enhance their transmission to the next generation. Importantly, it also provides a novel window to study the yet-poorly known haplodiploid sex determination mechanisms in haplodiploid insects

    Temperature stress increases hybrid incompatibilities in the parasitic wasp genus <i>Nasonia</i>

    Get PDF
    Hybrid incompatibilities, measured as mortality and sterility, are caused by the disruption of gene interactions. They are important post-zygotic isolation barriers to species hybridization, and much effort is put into the discovery of the genes underlying these incompatibilities. In hybridization studies of the haplodiploid parasitic wasp genus Nasonia, genic incompatibilities have been shown to affect mortality and sterility. The genomic regions associated with mortality have been found to depend on the cytotype of the hybrids and thus suggest cytonuclear incompatibilities. As environmental conditions can affect gene expression and gene interaction, we here investigate the effect of developmental temperature on sterility and mortality in Nasonia hybrids. Results show that extreme temperatures strongly affect both hybrid sterility (mainly spermatogenic failure) and mortality. Molecular mapping revealed that extreme temperatures increase transmission ratio distortion of parental alleles at incompatible loci, and thus, cryptic incompatible loci surface under temperature stress that remain undiscovered under standard temperatures. Our results underline the sensitivity of hybrid incompatibilities to environmental factors and the effects of unstable epistasis

    Quantitative Trait Locus Analysis of Mating Behavior and Male Sex Pheromones in Nasonia Wasps.

    Get PDF
    A major focus in speciation genetics is to identify the chromosomal regions and genes that reduce hybridization and gene flow. We investigated the genetic architecture of mating behavior in the parasitoid wasp species pair Nasonia giraulti and Nasonia oneida that exhibit strong prezygotic isolation. Behavioral analysis showed that N. oneida females had consistently higher latency times and broke off the mating sequence more often in the mounting stage when confronted with N. giraulti males compared with males of their own species. N. oneida males produce a lower quantity of the long-range male sex pheromone, (4R,5S)-5-hydroxy-4-decanolide (RS-HDL). Crosses between the two species yielded hybrid males with various pheromone quantities and these males were used in mating trials with females of either species to measure female mate discrimination rates. A quantitative trait locus (QTL) analysis involving 475 recombinant hybrid males (F2), 2148 reciprocally backcrossed females (F3), and a linkage map of 52 equally spaced neutral single nucleotide polymorphism (SNP) markers plus SNPs in 40 candidate mating behavior genes revealed four QTL for male pheromone amount depending on partner species. Our results demonstrate that the RS-HDL pheromone plays a role in the mating system of N. giraulti and N. oneida, but also that additional communication cues are involved in mate choice. No QTL were found for female mate discrimination which points at a polygenic architecture of female choice with strong environmental influences

    Health of the black soldier fly and house fly under mass-rearing conditions:innate immunity and the role of the microbiome

    Get PDF
    Rearing insects for food and feed is a rapidly growing industry, because it provides excellent opportunities for a sustainable approach to animal protein production. Two fly species, the black soldier fly (BSF) and the house fly (HF), naturally live in decaying organic matter (e.g. compost), and can thus be effectively reared on organic rest streams from the food and agricultural industry. The adoption of these insects as mini-livestock on microbially rich substrates, however, requires us to address how we can safeguard insect health under mass-rearing conditions. In this review, we discuss what is known about the innate immunity of insects in general, especially focusing on a comparative approach to current knowledge for the two dipteran species BSF and HF. We also discuss environmental factors that may affect innate immunity in mass-rearing settings, including temperature, insect densities and diet composition. Furthermore, we address the role of the microbiome in insect health and the associations of these fly species with detrimental or beneficial microbes. Finally, we present a perspective on important open scientific questions for optimizing the mass rearing of these insects with respect to their health and welfar

    Absence of single-locus complementary sex determination in the braconid wasps Asobara tabida and Alysia manducator

    Get PDF
    In species with single-locus complementary sex determination (sl-CSD), sex is determined by multiple alleles at a single locus. In the haplodiploid Hymenoptera, sl-CSD results in females, if individuals are heterozygous at the sex locus, and in males, if individuals are hemizygous (haploid males) or homozygous (diploid males). Several hymenopteran species have been shown to have sl-CSD, but in several others sl-CSD is absent and the phylogenetic distribution remains unclear. In the family Braconidae, all four species tested so far were shown to possess sl-CSD. In this study, inbreeding experiments were used to test for the presence of sl-CSD in two species belonging to a subfamily of the Braconidae, Asobara tabida and Alysia manducator (Alysiinae). In both species inbreeding experiments showed no difference in brood size or sex ratio compared to the (outbred) control group. Furthermore, the sex ratios found in the inbreeding treatment differed significantly from the sex ratios expected under sl-CSD. Therefore, we conclude that sl-CSD is absent in these species. This study is the first to show the lack of sl-CSD in species of the Braconidae family and that hymenopteran sex-determining mechanisms can vary, even within a family.

    Functional insights from the GC-poor genomes of two aphid parasitoids, Aphidius ervi and Lysiphlebus fabarum.

    Get PDF
    Parasitoid wasps have fascinating life cycles and play an important role in trophic networks, yet little is known about their genome content and function. Parasitoids that infect aphids are an important group with the potential for biological control. Their success depends on adapting to develop inside aphids and overcoming both host aphid defenses and their protective endosymbionts. We present the de novo genome assemblies, detailed annotation, and comparative analysis of two closely related parasitoid wasps that target pest aphids: Aphidius ervi and Lysiphlebus fabarum (Hymenoptera: Braconidae: Aphidiinae). The genomes are small (139 and 141 Mbp) and the most AT-rich reported thus far for any arthropod (GC content: 25.8 and 23.8%). This nucleotide bias is accompanied by skewed codon usage and is stronger in genes with adult-biased expression. AT-richness may be the consequence of reduced genome size, a near absence of DNA methylation, and energy efficiency. We identify missing desaturase genes, whose absence may underlie mimicry in the cuticular hydrocarbon profile of L. fabarum. We highlight key gene groups including those underlying venom composition, chemosensory perception, and sex determination, as well as potential losses in immune pathway genes. These findings are of fundamental interest for insect evolution and biological control applications. They provide a strong foundation for further functional studies into coevolution between parasitoids and their hosts. Both genomes are available at https://bipaa.genouest.org
    • 

    corecore