35 research outputs found
A New Phase of Matter: Quark-Gluon Plasma Beyond the Hagedorn Critical Temperature
I retrace the developments from Hagedorn's concept of a limiting temperature
for hadronic matter to the discovery and characterization of the quark-gluon
plasma as a new state of matter. My recollections begin with the transformation
more than 30 years ago of Hagedorn's original concept into its modern
interpretation as the "critical" temperature separating the hadron gas and
quark-gluon plasma phases of strongly interacting matter. This was followed by
the realization that the QCD phase transformation could be studied
experimentally in high-energy nuclear collisions. I describe here my personal
effort to help develop the strangeness experimental signatures of quark and
gluon deconfinement and recall how the experimental program proceeded soon to
investigate this idea, at first at the SPS, then at RHIC, and finally at LHC.
As it is often the case, the experiment finds more than theory predicts, and I
highlight the discovery of the "perfectly" liquid quark-gluon plasma at RHIC. I
conclude with an outline of future opportunities, especially the search for a
critical point in the QCD phase diagram.Comment: To appear in {\em Melting Hadrons, Boiling Quarks} by Rolf Hagedorn
and Johan Rafelski (editor), Springer Publishers, 2015 (open access