6,788 research outputs found

    Cluster states in nuclei as representations of a U(n+1) group

    Full text link
    We propose a description of cluster states in nuclei in terms of representations of unitary algebras U(n+1), where n is the number of space degrees of freedom. Within this framework, a variety of situations including both vibrational and rotational spectra, soft and rigid configurations, identical and non-identical constituents can be described. As an example, we show how the method can be used to study alpha-clustering configurations in 12C with point group symmetry D(3h).Comment: 5 pages, 2 figures, Phys. Rev. C, in pres

    Trajectory generation for road vehicle obstacle avoidance using convex optimization

    Get PDF
    This paper presents a method for trajectory generation using convex optimization to find a feasible, obstacle-free path for a road vehicle. Consideration of vehicle rotation is shown to be necessary if the trajectory is to avoid obstacles specified in a fixed Earth axis system. The paper establishes that, despite the presence of significant non-linearities, it is possible to articulate the obstacle avoidance problem in a tractable convex form using multiple optimization passes. Finally, it is shown by simulation that an optimal trajectory that accounts for the vehicle’s changing velocity throughout the manoeuvre is superior to a previous analytical method that assumes constant speed

    The spin-half Heisenberg antiferromagnet on two Archimedian lattices: From the bounce lattice to the maple-leaf lattice and beyond

    Full text link
    We investigate the ground state of the two-dimensional Heisenberg antiferromagnet on two Archimedean lattices, namely, the maple-leaf and bounce lattices as well as a generalized JJ-JJ' model interpolating between both systems by varying J/JJ'/J from J/J=0J'/J=0 (bounce limit) to J/J=1J'/J=1 (maple-leaf limit) and beyond. We use the coupled cluster method to high orders of approximation and also exact diagonalization of finite-sized lattices to discuss the ground-state magnetic long-range order based on data for the ground-state energy, the magnetic order parameter, the spin-spin correlation functions as well as the pitch angle between neighboring spins. Our results indicate that the "pure" bounce (J/J=0J'/J=0) and maple-leaf (J/J=1J'/J=1) Heisenberg antiferromagnets are magnetically ordered, however, with a sublattice magnetization drastically reduced by frustration and quantum fluctuations. We found that magnetic long-range order is present in a wide parameter range 0J/JJc/J0 \le J'/J \lesssim J'_c/J and that the magnetic order parameter varies only weakly with J/JJ'/J. At Jc1.45JJ'_c \approx 1.45 J a direct first-order transition to a quantum orthogonal-dimer singlet ground state without magnetic long-range order takes place. The orthogonal-dimer state is the exact ground state in this large-JJ' regime, and so our model has similarities to the Shastry-Sutherland model. Finally, we use the exact diagonalization to investigate the magnetization curve. We a find a 1/3 magnetization plateau for J/J1.07J'/J \gtrsim 1.07 and another one at 2/3 of saturation emerging only at large J/J3J'/J \gtrsim 3.Comment: 9 pages, 10 figure

    Vanishing spin alignment : experimental indication of triaxial 28Si+28Si\bf ^{28}Si + {^{28}Si} nuclear molecule

    Full text link
    Fragment-fragment-γ\gamma coincidences have been measured for 28Si+28Si\rm ^{28}Si + {^{28}Si} at an energy corresponding to the population of a conjectured resonance in 56^{56}Ni. Fragment angular distributions as well as γ\gamma-ray angular correlations indicate that the spin orientations of the outgoing fragments are perpendicular to the orbital angular momentum. This differs from the 24Mg+24Mg\rm ^{24}Mg+{^{24}Mg} and the 12C+12C\rm ^{12}C+{^{12}C} resonances, and suggests two oblate 28Si\rm ^{28}Si nuclei interacting in an equator-to-equator molecular configuration.Comment: 14 pages standard REVTeX file, 3 ps Figures -- Accepted for publication in Physical Review C (Rapid Communication

    Molecular features of a human rhabdomyosarcoma cell line with spontaneous metastatic progression

    Get PDF
    A novel human cell line was established from a primary botryoid rhabdomyosarcoma. Reverse transcription polymerase chain reaction investigations of this cell line, called RUCH-2, demonstrated expression of the regulatory factors PAX3, Myf3 and Myf5. After 3.5 months in culture, cells underwent a crisis after which Myf3 and Myf5 could no longer be detected, whereas PAX3 expression remained constant over the entire period. Karyotype analysis revealed breakpoints in regions similar to previously described alterations in primary rhabdomyosarcoma tumour samples. Interestingly, cells progressed to a metastatic phenotype, as observed by enhanced invasiveness in vitro and tumour growth in nude mice in vivo. On the molecular level, microarray analysis before and after progression identified extensive changes in the composition of the extracellular matrix. As expected, down-regulation of tissue inhibitors of metalloproteinases and up-regulation of matrix metalloproteinases were observed. Extensive down-regulation of several death receptors of the tumour necrosis factor family suggests that these cells might have an altered response to appropriate apoptotic stimuli. The RUCH-2 cell line represents a cellular model to study multistep tumorigenesis in human rhabdomyosarcoma, allowing molecular comparison of tumorigenic versus metastatic cancer cells. © 2000 Cancer Research Campaig

    An earth pole-sitter using hybrid propulsion

    Get PDF
    In this paper we investigate optimal pole-sitter orbits using hybrid solar sail and solar electric propulsion (SEP). A pole-sitter is a spacecraft that is constantly above one of the Earth's poles, by means of a continuous thrust. Optimal orbits, that minimize propellant mass consumption, are found both through a shape-based approach, and solving an optimal control problem, using a direct method based on pseudo-spectral techniques. Both the pure SEP case and the hybrid case are investigated and compared. It is found that the hybrid spacecraft allows consistent savings on propellant mass fraction. Finally, is it shown that for sufficiently long missions (more than 8 years), a hybrid spacecraft, based on mid-term technology, enables a consistent reduction in the launch mass for a given payload, with respect to a pure SEP spacecraft

    Small-x QCD studies with CMS at the LHC

    Get PDF
    The capabilities of the CMS experiment to study the low-x parton structure and QCD evolution in the proton and the nucleus at LHC energies are presented through four different measurements, to be carried out in Pb-Pb at sqrt(s_NN) = 5.5 TeV: (i) the charged hadron rapidity density dNch/dηdN_{ch}/d\eta and (ii) the ultraperipheral (photo)production of Upsilon; and in p-p at sqrt(s) = 14 TeV: (iii) inclusive forward jets and (iv) Mueller-Navelet dijets (separated by DeltaηDelta\eta\gtrsim 8).Comment: Quark Matter'06 Proceedings. To appear in J.Phys.

    Deformation effects in the 28^{28}Si+12^{12}C and 28^{28}Si+28^{28}Si reaction Search

    Full text link
    The possible occurence of highly deformed configurations is investigated in the 40^{40}Ca and 56^{56}Ni di-nuclear systems as formed in the 28^{28}Si+12^{12}C,28^{28}Si reactions by using the properties of emitted light charged particles. Inclusive as well as exclusive data of the heavy fragments and their associated light charged particles have been collected by using the {\sc ICARE} charged particle multidetector array. The data are analysed by Monte Carlo CASCADE statistical-model calculations using a consistent set of parameters with spin-dependent level densities. Significant deformation effects at high spin are observed as well as an unexpected large 8^{8}Be cluster emission of a binary nature.Comment: 3 pages latex, 2 eps figures, paper presented in "wokshop on physics with multidetector array (pmda2000)Calcutta, India (to be published at PRAMANA, journal of Physics, India
    corecore