927 research outputs found

    Canine pluripotent stem cells: Are they ready for clinical applications?

    Get PDF
    The derivation of canine embryonic stem cells and generation of canine-induced pluripotent stem cells are significant achievements that have unlocked the potential for developing novel cell-based disease models, drug discovery platforms, and transplantation therapies in the dog. A progression from concept to cure in this clinically relevant companion animal will not only help our canine patients but also help advance human regenerative medicine. Nevertheless, many issues remain to be resolved before pluripotent cells can be used clinically in a safe and reproducible manner

    Canine pluripotent stem cells: Are they ready for clinical applications?

    Get PDF
    The derivation of canine embryonic stem cells and generation of canine-induced pluripotent stem cells are significant achievements that have unlocked the potential for developing novel cell-based disease models, drug discovery platforms, and transplantation therapies in the dog. A progression from concept to cure in this clinically relevant companion animal will not only help our canine patients but also help advance human regenerative medicine. Nevertheless, many issues remain to be resolved before pluripotent cells can be used clinically in a safe and reproducible manner

    The p66\u3csup\u3eShc\u3c/sup\u3e adaptor protein controls oxidative stress response in early bovine embryos

    Get PDF
    The in vitro production of mammalian embryos suffers from high frequencies of developmental failure due to excessive levels of permanent embryo arrest and apoptosis caused by oxidative stress. The p66Shc stress adaptor protein controls oxidative stress response of somatic cells by regulating intracellular ROS levels through multiple pathways, including mitochondrial ROS generation and the repression of antioxidant gene expression. We have previously demonstrated a strong relationship with elevated p66Shc levels, reduced antioxidant levels and greater intracellular ROS generation with the high incidence of permanent cell cycle arrest of 2-4 cell embryos cultured under high oxygen tensions or after oxidant treatment. The main objective of this study was to establish a functional role for p66Shc in regulating the oxidative stress response during early embryo development. Using RNA interference in bovine zygotes we show that p66Shc knockdown embryos exhibited increased MnSOD levels, reduced intracellular ROS and DNA damage that resulted in a greater propensity for development to the blastocyst stage. P66Shc knockdown embryos were stress resistant exhibiting significantly reduced intracellular ROS levels, DNA damage, permanent 2-4 cell embryo arrest and diminished apoptosis frequencies after oxidant treatment. The results of this study demonstrate that p66Shc controls the oxidative stress response in early mammalian embryos. Small molecule inhibition of p66Shc may be a viable clinical therapy to increase the developmental potential of in vitro produced mammalian embryos. © 2014 Betts et al

    The role of telomeres and telomerase reverse transcriptase isoforms in pluripotency induction and maintenance

    Get PDF
    Telomeres are linear guanine-rich DNA structures at the ends of chromosomes. The length of telomeric DNA is actively regulated by a number of mechanisms in highly proliferative cells such as germ cells, cancer cells, and pluripotent stem cells. Telomeric DNA is synthesized by way of the ribonucleoprotein called telomerase containing a reverse transcriptase (TERT) subunit and RNA component (TERC). TERT is highly conserved across species and ubiquitously present in their respective pluripotent cells. Recent studies have uncovered intricate associations between telomeres and the self-renewal and differentiation properties of pluripotent stem cells. Interestingly, the past decade\u27s work indicates that the TERT subunit also has the capacity to modulate mitochondrial function, to remodel chromatin structure, and to participate in key signaling pathways such as the Wnt/β-catenin pathway. Many of these non-canonical functions do not require TERT\u27s catalytic activity, which hints at possible functions for the extensive number of alternatively spliced TERT isoforms that are highly expressed in pluripotent stem cells. In this review, some of the established and potential routes of pluripotency induction and maintenance are highlighted from the perspectives of telomere maintenance, known TERT isoform functions and their complex regulation

    Suppression of the imprinted gene NNAT and X-Chromosome gene activation in isogenic human iPS cells

    Get PDF
    Genetic comparison between human embryonic stem cells and induced pluripotent stem cells has been hampered by genetic variation. To solve this problem, we have developed an isogenic system that allows direct comparison of induced pluripotent stem cells (hiPSCs) to their genetically matched human embryonic stem cells (hESCs). We show that hiPSCs have a highly similar transcriptome to hESCs. Global transcriptional profiling identified 102-154 genes (\u3e2 fold) that showed a difference between isogenic hiPSCs and hESCs. A stringent analysis identified NNAT as a key imprinted gene that was dysregulated in hiPSCs. Furthermore, a disproportionate number of X-chromosome localized genes were over-expressed in female hiPSCs. Our results indicate that despite a remarkably close transcriptome to hESCs, isogenic hiPSCs have alterations in imprinting and regulation of X-chromosome genes. © 2011 Teichroeb et al

    The long and short of it: The role of telomeres in fetal origins of adult disease

    Get PDF
    Placental insufficiency, maternal malnutrition, and other causes of intrauterine growth restriction (IUGR) can significantly affect short-term growth and long-term health. Following IUGR, there is an increased risk for cardiovascular disease and Type 2 Diabetes. The etiology of these diseases is beginning to be elucidated, and premature aging or cellular senescence through increased oxidative stress and DNA damage to telomeric ends may be initiators of these disease processes. This paper will explore the areas where telomere and telomerase biology can have significant effects on various tissues in the body in IUGR outcomes. © 2012 Stephanie E. Hallows et al

    Extracellular vesicles, microRNA and the preimplantation embryo: non-invasive clues of embryo well-being

    Get PDF
    Elective single embryo transfer is rapidly becoming the standard of care in assisted reproductive technology for patients under the age of 35 years with a good prognosis. Clinical pregnancy rates have become increasingly dependent on the selection of a single viable embryo for transfer, and diagnostic techniques facilitating this selection continue to develop. Current progress in elucidating the extracellular vesicle and microRNA components of the embryonic secretome is reviewed, and the potential for these findings to improve clinical embryo selection discussed. Key results have shown that extracellular vesicles and microRNAs are rapidly detectable constituents of the embryonic secretome. Evidence suggests that the vesicular population is largely exosomal in nature, secreted at all stages of preimplantation development and capable of traversing the zona pellucida. Both extracellular vesicle and microRNA concentrations within the secretome are elevated for blastocysts with diminished developmental competence, as indicated either by degeneracy or implantation failure, whereas studies have yet to firmly correlate individual microRNA sequences with pregnancy outcome. These emerging correlations support the viability of extracellular vesicles and microRNAs as the basis for a new diagnostic test to supplement or replace morphokinetic assessment

    Differential localization patterns of pyruvate kinase isoforms in murine naĂŻve, formative, and primed pluripotent states

    Get PDF
    Mouse embryonic stem cells (mESCs) and mouse epiblast stem cells (mEpiSCs) represent opposite ends of the pluripotency continuum, referred to as naĂŻve and primed pluripotent states, respectively. These divergent pluripotent states differ in several ways, including growth factor requirements, transcription factor expression, DNA methylation patterns, and metabolic profiles. NaĂŻve cells employ both glycolysis and oxidative phosphorylation (OXPHOS), whereas primed cells preferentially utilize aerobic glycolysis, a trait shared with cancer cells referred to as the Warburg Effect. Until recently, metabolism has been regarded as a by-product of cell fate, however, evidence now supports metabolism as being a driver of stem cell state and fate decisions. Pyruvate kinase muscle isoforms (PKM1 and PKM2) are important for generating and maintaining pluripotent stem cells (PSCs) and mediating the Warburg Effect. Both isoforms catalyze the final, rate limiting step of glycolysis, generating adenosine triphosphate and pyruvate, however, the precise role(s) of PKM1/2 in naĂŻve and primed pluripotency is not well understood. The primary objective of this study was to characterize the cellular expression and localization patterns of PKM1 and PKM2 in mESCs, chemically transitioned epiblast-like cells (mEpiLCs) representing formative pluripotency, and mEpiSCs using immunoblotting and confocal microscopy. The results indicate that PKM1 and PKM2 are not only localized to the cytoplasm, but also accumulate in differential subnuclear regions of mESC, mEpiLCs, and mEpiSCs as determined by a quantitative confocal microscopy employing orthogonal projections and airyscan processing. Importantly, we discovered that the subnuclear localization of PKM1/2 changes during the transition from mESCs, mEpiLCs, and mEpiSCs. Finally, we have comprehensively validated the appropriateness and power of the Pearson\u27s correlation coefficient and Manders\u27s overlap coefficient for assessing nuclear and cytoplasmic protein colocalization in PSCs by immunofluorescence confocal microscopy. We propose that nuclear PKM1/2 may assist with distinct pluripotency state maintenance and lineage priming by non-canonical mechanisms. These results advance our understanding of the overall mechanisms controlling naĂŻve, formative, and primed pluripotency

    Re-thinking flexibility in higher education: A shared responsibility of students and educators

    Get PDF
    In recent years, there has been a growing recognition of the importance of flexibility in higher education as a key factor that can contribute to enhancing student learning and accessibility. However, flexibility has previously been investigated through an institutional lens that fails to consider those directly involved—students and educators. Moreover, the majority of current research regarding flexibility is based on anecdotal evidence and theoretical frameworks; therefore, evidence-based research is lacking. This plenary session is presented from a student perspective, who found that often, the parts of her identity that she took pride in—middle eastern background, gender, and hearing loss—were also the cause of her struggles. In conversations with other students, it was revealed that their diversity or life circumstances hindered their ability to pursue education. Flexibility was identified as key to enhancing their academic experience. Thus, the presenter decided to focus her fourth year thesis on a project that investigated students’ and educators’ experiences surrounding flexibility to inform future policies about effective flexible practices that accurately represent both groups. This session will highlight similarities and differences between students’ and educators’ experiences, barriers educators face when implementing flexibility, and a current misalignment in perceptions of flexibility between students and educators. Engaging in transparent and reciprocal open conversations can enhance the student-educator bond and solidify both groups’ sense of belonging. This study was approved by Western’s Non-Medical Research Ethics Board
    • …
    corecore