4 research outputs found

    Dual, HLA-B27 Subtype-dependent Conformation of a Self-peptide

    Get PDF
    The products of the human leukocyte antigen subtypes HLA-B*2705 and HLA-B*2709 differ only in residue 116 (Asp vs. His) within the peptide binding groove but are differentially associated with the autoimmune disease ankylosing spondylitis (AS); HLA-B*2705 occurs in AS-patients, whereas HLA-B*2709 does not. The subtypes also generate differential T cell repertoires as exemplified by distinct T cell responses against the self-peptide pVIPR (RRKWRRWHL). The crystal structures described here show that pVIPR binds in an unprecedented dual conformation only to HLA-B*2705 molecules. In one binding mode, peptide pArg5 forms a salt bridge to Asp116, connected with drastically different interactions between peptide and heavy chain, contrasting with the second, conventional conformation, which is exclusively found in the case of B*2709. These subtype-dependent differences in pVIPR binding link the emergence of dissimilar T cell repertoires in individuals with HLA-B*2705 or HLA-B*2709 to the buried Asp116/His116 polymorphism and provide novel insights into peptide presentation by major histocompatibility antigens

    The C Terminus of the Nucleoprotein of Influenza A Virus Delivers Antigens Transduced by Tat to the trans-Golgi Network and Promotes an Efficient Presentation through HLA Class I

    No full text
    Cytotoxic T lymphocytes (CTLs) are the most powerful weapon of the immune system to eliminate cells infected by intracellular parasites or tumors. However, very often, escape mechanisms overcome CTL immune surveillance by impairing the classical HLA class I antigen-processing pathway. Here, we describe a strategy for CTL activation based on the ability of Tat to mediate transcellular delivery of viral proteins encompassing HLA class I-restricted epitopes. In this system, the recombinant protein TAT-NpFlu containing the transduction domain of Tat of human immunodeficiency virus type 1 fused to the amino acid region 301 to 498 of the nucleoprotein of influenza A virus is proven to sensitize different human cells to lysis by HLA-B27-restricted, Flu 383-391-specific CTL lines. The fusion protein is processed very effectively, since a comparable biological effect is obtained with an amount of protein between 1 and 2 orders of magnitude lower than that of the synthetic peptide. Interestingly, while part of TAT-NpFlu undergoes fast and productive cleavage, a large amount of it remains intact for up to 24 h. Confocal microscopy shows that TAT-NpFlu accumulates in the trans-Golgi network (TGN), where it starts to be detectable 1 h after transduction. Using TAT-NpFlu mutants and hybrid constructs, we demonstrate that enrichment in the TGN occurs only when the carboxy-terminal region of NpFlu (amino acids 400 to 498) is present. These data disclose an unconventional route for presentation of epitopes restricted for HLA class I molecules
    corecore