249 research outputs found
Phase transitions in spin-orbital coupled model for pyroxene titanium oxides
We study the competing phases and the phase transition phenomena in an
effective spin-orbital coupled model derived for pyroxene titanium oxides
ATiSi2O6 (A=Na, Li). Using the mean-field-type analysis and the numerical
quantum transfer matrix method, we show that the model exhibits two different
ordered states, the spin-dimer and orbital-ferro state and the spin-ferro and
orbital-antiferro state. The transition between two phases is driven by the
relative strength of the Hund's-rule coupling to the onsite Coulomb repulsion
and/or by the external magnetic field. The ground-state phase diagram is
determined. There is a keen competition between orbital and spin degrees of
freedom in the multicritical regime, which causes large fluctuations and
significantly affects finite-temperature properties in the paramagnetic phase.Comment: 4 pages, 6 figures, proceedings submitted to SPQS200
A study to assess COPD Symptom-based Management and to Optimise treatment Strategy in Japan (COSMOS-J) based on GOLD 2011
Background and objective: The Global initiative for chronic Obstructive Lung Disease(GOLD) Committee has proposed a chronic obstructive pulmonary disease (COPD) assessment framework focused on symptoms and on exacerbation risk. This study will evaluate a symptom and exacerbation risk-based treatment strategy based on GOLD in a real-world setting in Japan. Optimal management of COPD will be determined by assessing symptoms using the COPD Assessment Test (CAT) and by assessing the frequency of exacerbations.
Methods: This study (ClinicalTrials.gov identifier: NCT01762800) is a 24-week, multicenter, randomized, double-blind, double-dummy, parallel-group study. It aims to recruit 400 patients with moderate-to-severe COPD. Patients will be randomized to receive treatment with either
salmeterol/fluticasone propionate (SFC) 50/250μg twice daily or with tiotropium bromide 18μg once daily. Optimal management of patients will be assessed at four-weekly intervals and, if patients remain symptomatic, as measured using the CAT, or experience an exacerbation, they
have the option to step up to treatment with both drugs, ie, SFC twice daily and tiotropium once daily (TRIPLE therapy). The primary endpoint of the study will be the proportion of patients who are able to remain on the randomized therapy.
Results: No data are available. This paper summarizes the methodology of the study in advance of the study starting.
Conclusion: The results of this study will help physicians to understand whether TRIPLE therapy is more effective than either treatment strategy alone in controlling symptoms and exacerbations in patients with moderate-to-severe COPD. It will also help physicians to understand the GOLD recommendation work in Japan
Exact dimer ground state of the two dimensional Heisenberg spin system SrCu_2(BO_3)_2
The two dimensional Heisenberg model for SrCu_2(BO_3)_2 has the exact dimer
ground state which was proven by Shastry and Sutherland almost twenty years
ago. The critical value of the quantum phase transition from the dimer state to
the N\'{e}el ordered state is determined. Analysis of the experimental data
shows that SrCu_2(BO_3)_2 has the dimer ground state but is close to the
transition point, which leads to the unusual temperature dependence of the
susceptibility. Almost localized nature of the triplet excitations explains the
plateaus observed in the magnetization curve.Comment: 4 pages, 5 figures, to appear in PR
One-Dimensional Confinement and Enhanced Jahn-Teller Instability in LaVO
Ordering and quantum fluctuations of orbital degrees of freedom are studied
theoretically for LaVO in spin-C-type antiferromagnetic state. The
effective Hamiltonian for the orbital pseudospin shows strong one-dimensional
anisotropy due to the negative interference among various exchange processes.
This significantly enhances the instability toward lattice distortions for the
realistic estimate of the Jahn-Teller coupling by first-principle LDA+
calculations, instead of favoring the orbital singlet formation. This explains
well the experimental results on the anisotropic optical spectra as well as the
proximity of the two transition temperatures for spin and orbital orderings.Comment: 4 pages including 4 figure
Thermodynamics of the anisotropic Heisenberg chain calculated by the density matrix renormalization group method
The density matrix renormalization group (DMRG) method is applied to the
anisotropic Heisenberg chain at finite temperatures. The free energy of the
system is obtained using the quantum transfer matrix which is iteratively
enlarged in the imaginary time direction. The magnetic susceptibility and the
specific heat are calculated down to T=0.01J and compared with the Bethe ansatz
results. The agreement including the logarithmic correction in the magnetic
susceptibility at the isotropic point is fairly good.Comment: 4 pages, 3 Postscript figures, REVTeX, to appear in J. Phys. Soc.
Jpn. Vol.66 No.8 (1997
Finite-temperature phase transitions in quasi-one-dimensional molecular conductors
Phase transitions in 1/4-filled quasi-one-dimensional molecular conductors
are studied theoretically on the basis of extended Hubbard chains including
electron-lattice interactions coupled by interchain Coulomb repulsion. We apply
the numerical quantum transfer-matrix method to an effective one-dimensional
model, treating the interchain term within mean-field approximation.
Finite-temperature properties are investigated for the charge ordering, the
"dimer Mott" transition (bond dimerization), and the spin-Peierls transition
(bond tetramerization). A coexistent state of charge order and bond
dimerization exhibiting dielectricity is predicted in a certain parameter
range, even when intrinsic dimerization is absent.Comment: to be published in J. Phys. Soc. Jpn., Vol. 76 (2007) No. 1 (5 pages,
4 figures); typo correcte
The Free Energy and the Scaling Function of the Ferromagnetic Heisenberg Chain in a Magnetic Field
A nonlinear susceptibilities (the third derivative of a magnetization
by a magnetic field ) of the =1/2 ferromagnetic Heisenberg chain and the
classical Heisenberg chain are calculated at low temperatures In both
chains the nonlinear susceptibilities diverge as and a linear
susceptibilities diverge as The arbitrary spin Heisenberg
ferromagnet has a scaling relation between and
The scaling function
=(2/3)-(44/135) + O() is common to all values of spin
Comment: 16 pages (revtex 2.0) + 6 PS figures upon reques
Efficiency of symmetric targeting for finite-T DMRG
Two targeting schemes have been known for the density matrix renormalization
group (DMRG) applied to non-Hermitian problems; one uses an asymmetric density
matrix and the other uses symmetric density matrix. We compare the numerical
efficiency of these two targeting schemes when they are used for the finite
temperature DMRG.Comment: 4 pages, 3 Postscript figures, REVTe
Skyrmions in quantum Hall ferromagnets as spin-waves bound to unbalanced magnetic flux quanta
A microscopic description of (baby)skyrmions in quantum Hall ferromagnets is
derived from a scattering theory of collective (neutral) spin modes by a bare
quasiparticle. We start by mapping the low lying spectrum of spin waves in the
uniform ferromagnet onto that of free moving spin excitons, and then we study
their scattering by the defect of charge. In the presence of this disturbance,
the local spin stiffness varies in space, and we translate it into an
inhomogeneus metric in the Hilbert space supporting the excitons. An attractive
potencial is then required to preserve the symmetry under global spin
rotations, and it traps the excitons around the charged defect. The
quasiparticle now carries a spin texture. Textures containing more than one
exciton are described within a mean-field theory, the interaction among the
excitons being taken into account through a new renormalization of the metric.
The number of excitons actually bound depends on the Zeeman coupling, that
plays the same role as a chemical potencial. For small Zeeman energies, the
defect binds many excitons which condensate. As the bound excitons have a unit
of angular momentum, provided by the quantum of magnetic flux left unbalanced
by the defect of charge, the resulting texture turns out to be a topological
excitation of charge 1. Its energy is that given by the non-linear sigma model
for the ground state in this topological sector, i.e. the texture is a
skyrmion.Comment: 17 pages, 1 figur
Coexistence of antiferromagnetic order and unconventional superconductivity in heavy fermion compounds CeRh_{1-x}Ir_xIn_5: nuclear quadrupole resonance studies
We present a systematic ^{115}In NQR study on the heavy fermion compounds
CeRh_{1-x}Ir_xIn_5 (x=0.25, 0.35, 0.45, 0.5, 0.55 and 0.75). The results
provide strong evidence for the microscopic coexistence of antiferromagnetic
(AF) order and superconductivity (SC) in the range of 0.35 \leq x \leq 0.55.
Specifically, for x=0.5, T_N is observed at 3 K with a subsequent onset of
superconductivity at T_c=0.9 K. T_c reaches a maximum (0.94 K) at x=0.45 where
T_N is found to be the highest (4.0 K). Detailed analysis of the measured
spectra indicate that the same electrons participate in both SC and AF order.
The nuclear spin-lattice relaxation rate 1/T_1 shows a broad peak at T_N and
follows a T^3 variation below T_c, the latter property indicating
unconventional SC as in CeIrIn_5 (T_c=0.4 K). We further find that, in the
coexistence region, the T^3 dependence of 1/T_1 is replaced by a T-linear
variation below T\sim 0.4 K, with the value \frac{(T_1)_{T_c}}{(T_1)_{low-T}}
increasing with decreasing x, likely due to low-lying magnetic excitations
associated with the coexisting magnetism.Comment: 20 pages, 14 figure
- …