15 research outputs found

    Structural Properties of Gibbsian Point Processes in Abstract Spaces

    Get PDF
    In the language of random counting measures, many structural properties of the Poisson process can be studied in arbitrary measurable spaces. We provide a similarly general treatise of Gibbs processes. With the GNZ equations as a definition of these objects, Gibbs processes can be introduced in abstract spaces without any topological structure. In this general setting, partition functions, Janossy densities, and correlation functions are studied. While the definition covers finite and infinite Gibbs processes alike, the finite case allows, even in abstract spaces, for an equivalent and more explicit characterization via a familiar series expansion. Recent generalizations of factorial measures to arbitrary measurable spaces, where counting measures cannot be written as sums of Dirac measures, likewise allow to generalize the concept of Hamiltonians. The DLR equations, which completely characterize a Gibbs process, as well as basic results for the local convergence topology, are also formulated in full generality. We prove a new theorem on the extraction of locally convergent subsequences from a sequence of point processes and use this statement to provide existence results for Gibbs processes in general spaces with potentially infinite range of interaction. These results are used to guarantee the existence of Gibbs processes with cluster-dependent interactions and to prove a recent conjecture concerning the existence of Gibbsian particle processes

    A point process theoretic study of Gibbs measures in abstract state spaces

    Get PDF

    On the uniqueness of Gibbs distributions with a non-negative and subcritical pair potential

    Full text link
    We prove that the distribution of a Gibbs process with non-negative pair potential is uniquely determined as soon as an associated Poisson-driven random connection model (RCM) does not percolate. Our proof combines disagreement coupling in continuum with a coupling of a Gibbs process and a RCM. The improvement over previous uniqueness results is illustrated both in theory and simulations.Comment: 23 pages, 5 table

    Minimum Lq^{q}-distance estimators for non-normalized parametric models

    Get PDF
    We propose and investigate a new estimation method for the parameters of models consisting of smooth density functions on the positive half axis. The procedure is based on a recently introduced characterization result for the respective probability distributions, and is to be classified as a minimum distance estimator, incorporating as a distance function the Lq^{q}‐norm. Throughout, we deal rigorously with issues of existence and measurability of these implicitly defined estimators. Moreover, we provide consistency results in a common asymptotic setting, and compare our new method with classical estimators for the exponential, the Rayleigh and the Burr Type XII distribution in Monte Carlo simulation studies. We also assess the performance of different estimators for non‐normalized models in the context of an exponential‐polynomial family

    Characterizations of non-normalized discrete probability distributions and their application in statistics

    Get PDF
    From the distributional characterizations that lie at the heart of Stein's method we derive explicit formulae for the mass functions of discrete probability laws that identify those distributions. These identities are applied to develop tools for the solution of statistical problems. Our characterizations, and hence the applications built on them, do not require any knowledge about normalization constants of the probability laws. To demonstrate that our statistical methods are sound, we provide comparative simulation studies for the testing of fit to the Poisson distribution and for parameter estimation of the negative binomial family when both parameters are unknown. We also consider the problem of parameter estimation for discrete exponential-polynomial models which generally are non-normalized.Comment: 24 pages, 3 figure

    Minimum LqL^q-distance estimators for non-normalized parametric models

    Get PDF
    We propose and investigate a new estimation method for the parameters of models consisting of smooth density functions on the positive half axis. The procedure is based on a recently introduced characterization result for the respective probability distributions, and is to be classified as a minimum distance estimator, incorporating as a distance function the LqL^q-norm. Throughout, we deal rigorously with issues of existence and measurability of these implicitly defined estimators. Moreover, we provide consistency results in a common asymptotic setting, and compare our new method with classical estimators for the exponential-, the Rayleigh-, and the Burr Type XII distribution in Monte Carlo simulation studies. We also assess the performance of different estimators for non-normalized models in the context of an exponential-polynomial family.Comment: 27 pages, 8 table

    On Testing the Adequacy of the Inverse Gaussian Distribution

    Get PDF
    We propose a new class of goodness-of-fit tests for the inverse Gaussian distribution based on a characterization of the cumulative distribution function (CDF). The new tests are of weighted L2-type depending on a tuning parameter. We develop the asymptotic theory under the null hypothesis and under a broad class of alternative distributions. These results guarantee that the parametric bootstrap procedure, which we employ to implement the test, is asymptotically valid and that the whole test procedure is consistent. A comparative simulation study for finite sample sizes shows that the new procedure is competitive to classical and recent tests, outperforming these other methods almost uniformly over a large set of alternative distributions. The use of the newly proposed test is illustrated with two observed data set

    On Testing the Adequacy of the Inverse Gaussian Distribution

    No full text
    We propose a new class of goodness-of-fit tests for the inverse Gaussian distribution based on a characterization of the cumulative distribution function (CDF). The new tests are of weighted L2-type depending on a tuning parameter. We develop the asymptotic theory under the null hypothesis and under a broad class of alternative distributions. These results guarantee that the parametric bootstrap procedure, which we employ to implement the test, is asymptotically valid and that the whole test procedure is consistent. A comparative simulation study for finite sample sizes shows that the new procedure is competitive to classical and recent tests, outperforming these other methods almost uniformly over a large set of alternative distributions. The use of the newly proposed test is illustrated with two observed data sets
    corecore