7 research outputs found

    The impact of high and low dose ionising radiation on the central nervous system

    No full text
    Responses of the central nervous system (CNS) to stressors and injuries, such as ionising radiation, are modulated by the concomitant responses of the brains innate immune effector cells, microglia. Exposure to high doses of ionising radiation in brain tissue leads to the expression and release of biochemical mediators of ‘neuroinflammation’, such as pro-inflammatory cytokines and reactive oxygen species (ROS), leading to tissue destruction. Contrastingly, low dose ionising radiation may reduce vulnerability to subsequent exposure of ionising radiation, largely through the stimulation of adaptive responses, such as antioxidant defences. These disparate responses may be reflective of non-linear differential microglial activation at low and high doses, manifesting as an anti-inflammatory or pro-inflammatory functional state. Biomarkers of pathology in the brain, such as the mitochondrial Translocator Protein 18 kDa (TSPO), have facilitated in vivo characterisation of microglial activation and ‘neuroinflammation’ in many pathological states of the CNS, though the exact function of TSPO in these responses remains elusive. Based on the known responsiveness of TSPO expression to a wide range of noxious stimuli, we discuss TSPO as a potential biomarker of radiation-induced effects. © 2016 The Authors Published by Elsevier B.V

    Chronic inflammation in multiple sclerosis — seeing what was always there

    No full text
    Activation of innate immune cells and other brain compartmentalized inflammatory cellsin the brains and spinal cords of people with relapsing–remitting multiple sclerosis (MS) and progressive MS have been well described histopathologically. However, conventional clinical MRI is largely insensitive to this inflammatory activity. The past two decades have seen the introduction of quantitative dynamic MRI scanning with contrast agents that are sensitive to the reduction in blood–brain barrier integrity associated with inflammation and to the trafficking of inflammatory myeloid cells. New MRI imaging sequences provide improved contrast for better detection of grey matter lesions. Quantitative lesion volume measures and magnetic resonance susceptibility imaging are sensitive to the activity of macrophages in the rims of white matter lesions. PET and magnetic resonance spectroscopy methods also can be used to detect contributions from innate immune activation in the brain and spinal cord. Some of these advanced research imaging methods for visualization of chronic inflammation are practical for relatively routine clinical applications. Observations using these techniques suggest ways of stratifying patients with MS to improve their care. The imaging methods also provide new tools to support the development of therapies for chronic inflammation in MS

    Effects of Ionizing Radiation and their Potential Risk on the Brain: A Review

    No full text
    corecore