1,035 research outputs found

    Explaining the magnetic moment reduction of Fullerene encapsulated Gadolinium through a theoretical model

    Full text link
    We propose a Theoretical model accounting for the recently observed reduced magnetic moment of Gadolinium in fullerenes. While this reduction has been observed also for other trivalent rare-hearth atoms (Dy3+, Er3+, Ho3+) in fullerenes and can be ascribed to crystal field effects, the explanation of this phenomena for Gd3+ is not straightforward due to the sphericity of its ground state (S=7/2, L=0). In our model the momentum lowering is the result of a subtle interplay between hybridisation and spin-orbit interaction

    Avoiding the Detector Blinding Attack on Quantum Cryptography

    Full text link
    We show the detector blinding attack by Lydersen et al [1] will be ineffective on most single photon avalanche photodiodes (APDs) and certainly ineffective on any detectors that are operated correctly. The attack is only successful if a redundant resistor is included in series with the APD, or if the detector discrimination levels are set inappropriately

    Bepress & SSRN Pilot Results: Exploring New Synergies for Open Access and Legal Scholarship

    Full text link
    In March 2018 bepress and SSRN launched a pilot to explore integration between their platforms, partnering with the University of Georgia School of Law and Columbia Law School. This webinar brings two panelists from each law school to discuss the pilot, share findings, and explore implications for the landscape of open access legal scholarship. Topics include: What are the data and learnings from the pilot? How to foster author trust and enthusiasm for placing content on both platforms? What are the best workflows for administrators at institutions leveraging both Digital Commons and SSRN

    Efficient generation of tunable photon pairs at 0.8 and 1.6 micrometer

    Full text link
    We demonstrate efficient generation of collinearly propagating, highly nondegenerate photon pairs in a periodically-poled lithium niobate cw parametric downconverter with an inferred pair generation rate of 1.4*10^7/s/mW of pump power. Detection of an 800-nm signal photon triggers a thermoelectrically-cooled 20%-efficient InGaAs avalanche photodiode for the detection of the 1600-nm conjugate idler photon. Using single-mode fibers as spatial mode filters, we obtain a signal-conditioned idler-detection probability of about 3.1%.Comment: 8 pages, 3 figure

    Autocompensating Quantum Cryptography

    Full text link
    Quantum cryptographic key distribution (QKD) uses extremely faint light pulses to carry quantum information between two parties (Alice and Bob), allowing them to generate a shared, secret cryptographic key. Autocompensating QKD systems automatically and passively compensate for uncontrolled time dependent variations of the optical fiber properties by coding the information as a differential phase between orthogonally-polarized components of a light pulse sent on a round trip through the fiber, reflected at mid-course using a Faraday mirror. We have built a prototype system based on standard telecom technology that achieves a privacy-amplified bit generation rate of ~1000 bits/s over a 10-km optical fiber link. Quantum cryptography is an example of an application that, by using quantum states of individual particles to represent information, accomplishes a practical task that is impossible using classical means.Comment: 18 pages, 6 figures, 1 table. Submitted to the New Journal of Physic

    C1 inhibitor deficiency: 2014 United Kingdom consensus document

    Get PDF
    C1 inhibitor deficiency is a rare disorder manifesting with recurrent attacks of disabling and potentially life-threatening angioedema. Here we present an updated 2014 United Kingdom consensus document for the management of C1 inhibitor-deficient patients, representing a joint venture between the United Kingdom Primary Immunodeficiency Network and Hereditary Angioedema UK. To develop the consensus, we assembled a multi-disciplinary steering group of clinicians, nurses and a patient representative. This steering group first met in 2012, developing a total of 48 recommendations across 11 themes. The statements were distributed to relevant clinicians and a representative group of patients to be scored for agreement on a Likert scale. All 48 statements achieved a high degree of consensus, indicating strong alignment of opinion. The recommendations have evolved significantly since the 2005 document, with particularly notable developments including an improved evidence base to guide dosing and indications for acute treatment, greater emphasis on home therapy for acute attacks and a strong focus on service organisation. This article is protected by copyright. All rights reserved

    Performance of various quantum key distribution systems using 1.55 um up-conversion single-photon detectors

    Full text link
    We compare the performance of various quantum key distribution (QKD) systems using a novel single-photon detector, which combines frequency up-conversion in a periodically poled lithium niobate (PPLN) waveguide and a silicon avalanche photodiode (APD). The comparison is based on the secure communication rate as a function of distance for three QKD protocols: the Bennett-Brassard 1984 (BB84), the Bennett, Brassard, and Mermin 1992 (BBM92), and the coherent differential phase shift keying (DPSK). We show that the up-conversion detector allows for higher communication rates and longer communication distances than the commonly used InGaAs/InP APD for all the three QKD protocols.Comment: 9 pages, 9 figure

    A high-performance integrated single-photon detector for telecom wavelengths

    Full text link
    We have integrated a commercial avalanche photodiode (APD) and the circuitry needed to operate it as a single-photon detector (SPD) onto a single PC-board. At temperatures accessible with Peltier coolers (~200-240K), the PCB-SPD achieves high detection efficiency (DE) at 1308 and 1545 nm with low dark count probability (e.g. ~10-6/bias pulse at DE=20%, 220 K), making it useful for quantum key distribution (QKD). The board generates fast bias pulses, cancels noise transients, amplifies the signals, and sends them to an on-board discriminator. A digital blanking circuit suppresses afterpulsing.Comment: (10 pages, 6 figures

    Practical quantum key distribution: On the security evaluation with inefficient single-photon detectors

    Full text link
    Quantum Key Distribution with the BB84 protocol has been shown to be unconditionally secure even using weak coherent pulses instead of single-photon signals. The distances that can be covered by these methods are limited due to the loss in the quantum channel (e.g. loss in the optical fiber) and in the single-photon counters of the receivers. One can argue that the loss in the detectors cannot be changed by an eavesdropper in order to increase the covered distance. Here we show that the security analysis of this scenario is not as easy as is commonly assumed, since already two-photon processes allow eavesdropping strategies that outperform the known photon-number splitting attack. For this reason there is, so far, no satisfactory security analysis available in the framework of individual attacks.Comment: 11 pages, 6 figures; Abstract and introduction extended, Appendix added, references update

    Low-frequency connectivity is associated with mild traumatic brain injury

    Get PDF
    AbstractMild traumatic brain injury (mTBI) occurs from a closed-head impact. Often referred to as concussion, about 20% of cases complain of secondary psychological sequelae, such as disorders of attention and memory. Known as post-concussive symptoms (PCS), these problems can severely disrupt the patient's quality of life. Changes in local spectral power, particularly low-frequency amplitude increases and/or peak alpha slowing have been reported in mTBI, but large-scale connectivity metrics based on inter-regional amplitude correlations relevant for integration and segregation in functional brain networks, and their association with disorders in cognition and behaviour, remain relatively unexplored. Here, we used non-invasive neuroimaging with magnetoencephalography to examine functional connectivity in a resting-state protocol in a group with mTBI (n = 20), and a control group (n = 21). We observed a trend for atypical slow-wave power changes in subcortical, temporal and parietal regions in mTBI, as well as significant long-range increases in amplitude envelope correlations among deep-source, temporal, and frontal regions in the delta, theta, and alpha bands. Subsequently, we conducted an exploratory analysis of patterns of connectivity most associated with variability in secondary symptoms of mTBI, including inattention, anxiety, and depression. Differential patterns of altered resting state neurophysiological network connectivity were found across frequency bands. This indicated that multiple network and frequency specific alterations in large scale brain connectivity may contribute to overlapping cognitive sequelae in mTBI. In conclusion, we show that local spectral power content can be supplemented with measures of correlations in amplitude to define general networks that are atypical in mTBI, and suggest that certain cognitive difficulties are mediated by disturbances in a variety of alterations in network interactions which are differentially expressed across canonical neurophysiological frequency ranges
    • …
    corecore