182 research outputs found

    Drug development in oncology and devices-lessons for heart failure drug development and approval? a review

    Get PDF
    Heart failure (HF) and cancer are of the most common diseases globally, both associated with significant adverse outcomes and greatly impaired quality of life. Despite those similarities, over the last 15 years, the United States (USA) and European authorities have approved only 5 and 3 new drugs for HF respectively, none using an accelerated process and none for patients with either acute HF (AHF) or with HF and preserved ejection fraction (HFpEF). During the same period, more than 100 new drugs were approved for treatment of various cancers, several receiving accelerated approval. HF drugs in the last 15 years were mostly approved for reduction in mortality, whereas most approved cancer drugs addressed disease progression and surrogate markers. Consequently, the size of the trials in HF were far greater than those in oncology which was associated with lower probability of success. Given the larger study size and smaller probability of approval, pharma progressively reduces the necessary investments in new HF drugs. We suggest for HF drugs be developed, especially those used to treat patients with HFpEF and AHF, consideration of approval based beyond morbidity and mortality on improvements in symptoms and functional capacity and, like oncology, based on measures of disease progression and end organ damage. At the same time, HF drug development should adopt some approaches used in other diseases (such as oncology) focusing on better defining specific phenotypes and defining specific disease-related targets for new drugs

    A network analysis to compare biomarker profiles in patients with and without diabetes mellitus in acute heart failure

    Get PDF
    Aims: It is unclear whether distinct pathophysiological processes are present among patients with acute heart failure (AHF), with and without diabetes. Network analysis of biomarkers may identify correlative associations that reflect different pathophysiological pathways. Methods and results: We analysed a panel of 48 circulating biomarkers measured within 24 h of admission for AHF in a subset of patients enrolled in the PROTECT trial. In patients with and without diabetes, we performed a network analysis to identify correlations between measured biomarkers. Compared with patients without diabetes (n = 1111), those with diabetes (n = 922) had a higher prevalence of ischaemic heart disease and traditional coronary risk factors. After multivariable adjustment, patients with and without diabetes had significantly different levels of biomarkers across a spectrum of pathophysiological domains, including inflammation (TNFR-1a, periostin), cardiomyocyte stretch (BNP), angiogenesis (VEGFR, angiogenin), and renal function (NGAL, KIM-1) (adjusted P-value <0.05). Among patients with diabetes, network analysis revealed that periostin strongly clustered with C-reactive protein and interleukin-6. Furthermore, renal markers (creatinine and NGAL) closely associated with potassium and glucose. These findings were not seen among patients without diabetes. Conclusion: Patients with AHF and diabetes, compared with those without diabetes, have distinct biomarker profiles. Network analysis suggests that cardiac remodelling, inflammation, and fibrosis are closely associated with each other in patients with diabetes. Furthermore, potassium levels may be sensitive to changes in renal function as reflected by the strong renal–potassium–glucose correlation. These findings were not seen among patients without diabetes and may suggest distinct pathophysiological processes among AHF patients with diabetes

    Rolofylline, an adenosine A1−receptor antagonist, in acute heart failure

    Get PDF
    Background: Worsening renal function, which is associated with adverse outcomes, often develops in patients with acute heart failure. Experimental and clinical studies suggest that counterregulatory responses mediated by adenosine may be involved. We tested the hypothesis that the use of rolofylline, an adenosine A1−receptor antagonist, would improve dyspnea, reduce the risk of worsening renal function, and lead to a more favorable clinical course in patients with acute heart failure. Methods: We conducted a multicenter, double-blind, placebo-controlled trial involving patients hospitalized for acute heart failure with impaired renal function. Within 24 hours after presentation, 2033 patients were randomly assigned, in a 2:1 ratio, to receive daily intravenous rolofylline (30 mg) or placebo for up to 3 days. The primary end point was treatment success, treatment failure, or no change in the patient’s clinical condition; this end point was defined according to survival, heart-failure status, and changes in renal function. Secondary end points were the post-treatment development of persistent renal impairment and the 60-day rate of death or readmission for cardiovascular or renal causes. Results: Rolofylline, as compared with placebo, did not provide a benefit with respect to the primary end point (odds ratio, 0.92; 95% confidence interval, 0.78 to 1.09; P=0.35). Persistent renal impairment developed in 15.0% of patients in the rolofylline group and in 13.7% of patients in the placebo group (P=0.44). By 60 days, death or readmission for cardiovascular or renal causes had occurred in similar proportions of patients assigned to rolofylline and placebo (30.7% and 31.9%, respectively; P=0.86). Adverse-event rates were similar overall; however, only patients in the rolofylline group had seizures, a known potential adverse effect of A1-receptor antagonists. Conclusions: Rolofylline did not have a favorable effect with respect to the primary clinical composite end point, nor did it improve renal function or 60-day outcomes. It does not show promise in the treatment of acute heart failure with renal dysfunction. (Funded by NovaCardia, a subsidiary of Merck; ClinicalTrials.gov numbers, NCT00328692 and NCT00354458.

    Biomarker profiles of acute heart failure patients with a mid-range ejection fraction

    Get PDF
    OBJECTIVES: In this study, the authors used biomarker profiles to characterize differences between patients with acute heart failure with a midrange ejection fraction (HFmrEF) and compare them with patients with a reduced (heart failure with a reduced ejection fraction [HFrEF]) and preserved (heart failure with a preserved ejection fraction [HFpEF]) ejection fraction. BACKGROUND: Limited data are available on biomarker profiles in acute HFmrEF. METHODS: A panel of 37 biomarkers from different pathophysiological domains (e.g., myocardial stretch, inflammation, angiogenesis, oxidative stress, hematopoiesis) were measured at admission and after 24 h in 843 acute heart failure patients from the PROTECT trial. HFpEF was defined as left ventricular ejection fraction (LVEF) of ≥50% (n = 108), HFrEF as LVEF of <40% (n = 607), and HFmrEF as LVEF of 40% to 49% (n = 128). RESULTS: Hemoglobin and brain natriuretic peptide levels (300 pg/ml [HFpEF]; 397 pg/ml [HFmrEF]; 521 pg/ml [HFrEF]; ptrend <0.001) showed an upward trend with decreasing LVEF. Network analysis showed that in HFrEF interactions between biomarkers were mostly related to cardiac stretch, whereas in HFpEF, biomarker interactions were mostly related to inflammation. In HFmrEF, biomarker interactions were both related to inflammation and cardiac stretch. In HFpEF and HFmrEF (but not in HFrEF), remodeling markers at admission and changes in levels of inflammatory markers across the first 24 h were predictive for all-cause mortality and rehospitalization at 60 days (pinteraction <0.05). CONCLUSIONS: Biomarker profiles in patients with acute HFrEF were mainly related to cardiac stretch and in HFpEF related to inflammation. Patients with HFmrEF showed an intermediate biomarker profile with biomarker interactions between both cardiac stretch and inflammation markers. (PROTECT-1: A Study of the Selective A1 Adenosine Receptor Antagonist KW-3902 for Patients Hospitalized With Acute HF and Volume Overload to Assess Treatment Effect on Congestion and Renal Function; NCT00328692)

    Systolic blood pressure reduction during the first 24 h in acute heart failure admission: friend or foe?

    Get PDF
    Aims: Changes in systolic blood pressure (SBP) during an admission for acute heart failure (AHF), especially those leading to hypotension, have been suggested to increase the risk for adverse outcomes. Methods and results: We analysed associations of SBP decrease during the first 24 h from randomization with serum creatinine changes at the last time-point available (72 h), using linear regression, and with 30- and 180-day outcomes, using Cox regression, in 1257 patients in the VERITAS study. After multivariable adjustment for baseline SBP, greater SBP decrease at 24 h from randomization was associated with greater creatinine increase at 72 h and greater risk for 30-day all-cause death, worsening heart failure (HF) or HF readmission. The hazard ratio (HR) for each 1 mmHg decrease in SBP at 24 h for 30-day death, worsening HF or HF rehospitalization was 1.01 [95% confidence interval (CI) 1.00–1.02; P = 0.021]. Similarly, the HR for each 1 mmHg decrease in SBP at 24 h for 180-day all-cause mortality was 1.01 (95% CI 1.00–1.03; P = 0.038). The associations between SBP decrease and outcomes did not differ by tezosentan treatment group, although tezosentan treatment was associated with a greater SBP decrease at 24 h. Conclusions: In the current post hoc analysis, SBP decrease during the first 24 h was associated with increased renal impairment and adverse outcomes at 30 and 180 days. Caution, with special attention to blood pressure monitoring, should be exercised when vasodilating agents are given to AHF patients

    A combined clinical and biomarker approach to predict diuretic response in acute heart failure

    Get PDF
    Background: Poor diuretic response in acute heart failure is related to poor clinical outcome. The underlying mechanisms and pathophysiology behind diuretic resistance are incompletely understood. We evaluated a combined approach using clinical characteristics and biomarkers to predict diuretic response in acute heart failure (AHF). Methods and results: We investigated explanatory and predictive models for diuretic response—weight loss at day 4 per 40 mg of furosemide—in 974 patients with AHF included in the PROTECT trial. Biomarkers, addressing multiple pathophysiological pathways, were determined at baseline and after 24 h. An explanatory baseline biomarker model of a poor diuretic response included low potassium, chloride, hemoglobin, myeloperoxidase, and high blood urea nitrogen, albumin, triglycerides, ST2 and neutrophil gelatinase-associated lipocalin (r2 = 0.086). Diuretic response after 24 h (early diuretic response) was a strong predictor of diuretic response (β = 0.467, P < 0.001; r2 = 0.523). Addition of diuretic response after 24 h to biomarkers and clinical characteristics significantly improved the predictive model (r2 = 0.586, P < 0.001). Conclusions: Biomarkers indicate that diuretic unresponsiveness is associated with an atherosclerotic profile with abnormal renal function and electrolytes. However, predicting diuretic response is difficult and biomarkers have limited additive value. Patients at risk of poor diuretic response can be identified by measuring early diuretic response after 24 h

    Predictors and associations with outcomes of length of hospital stay in patients with acute heart failure: results from VERITAS

    Get PDF
    Background: The length of hospital stay (LOS) is important in patients admitted for acute heart failure (AHF) because it prolongs an unpleasant experience for the patients and adds substantially to health care costs. Methods and Results: We examined the association between LOS and baseline characteristics, 10-day post-discharge HF readmission, and 90-day post-discharge mortality in 1347 patients with AHF enrolled in the VERITAS program. Longer LOS was associated with greater HF severity and disease burden at baseline; however, most of the variability of LOS could not be explained by these factors. LOS was associated with a higher HF risk of both HF readmission (odds ratio for 1-day increase: 1.08; 95% confidence interval [CI] 1.01–1.16; P = .019) and 90-day mortality (hazard ratio for 1-day increase: 1.05; 95% CI 1.02–1.07; P < .001), although these associations are partially explained by concurrent end-organ damage and worsening heart failure during the first days of admission. Conclusions: In patients who have been admitted for AHF, longer length of hospital stay is associated with a higher rate of short-term mortality. Clinical Trial Registration: VERITAS-1 and -2: Clinicaltrials.gov identifiers NCT00525707 and NCT00524433

    Early drop in systolic blood pressure and worsening renal function in acute heart failure: renal results of Pre-RELAX-AHF.

    Get PDF
    AIMS: We aimed to determine the relation between baseline systolic blood pressure (SBP), change in SBP, and worsening renal function (WRF) in acute heart failure (AHF) patients enrolled in the Pre-RELAX-AHF trial. METHODS AND RESULTS: The Pre-RELAX-AHF study enrolled 234 patients within 16 h of admission (median 7 h) for AHF and randomized them to relaxin given intravenous (i.v.) for 48 h or placebo. Blood pressure was measured at baseline, at 3, 6, 9, 12, 24, 36, and 48 h and at 3, 4, and 5 days after enrolment. Worsening renal function was defined as a serum creatinine increase of ≥0.3 mg/dL by Day 5. Worsening renal function was found in 68 of the 225 evaluable patients (30%). Patients with WRF were older (73.5 ± 9.4 vs. 69.1 ± 10.6 years; P= 0.003), had a higher baseline SBP (147.3 ± 19.9 vs. 140.8 ± 16.7 mmHg; P= 0.01), and had a greater early drop in SBP (37.9 ± 16.0 vs. 31.4 ± 12.2 mmHg; P= 0.004). In a multivariable model, higher age, higher baseline creatinine, and a greater early drop in SBP, but not baseline SBP, remained independent predictors of WRF. Furthermore, WRF was associated with a higher Day 60 (P= 0.01), and Day 180 (P= 0.003) mortality. CONCLUSIONS: Worsening renal function in hospitalized AHF patients is related to a poor clinical outcome and is predicted by a greater early drop in SBP. Trial registration clinicaltrials.gov identifier NCT00520806
    • …
    corecore