400 research outputs found
Recommended from our members
An Exponentially Convergent Nonpolynomial Finite Element Method for Time-Harmonic Scattering from Polygons
In recent years nonpolynomial finite element methods have received increasing attention for the efficient solution of wave problems. As with their close cousin the method of particular solutions, high efficiency comes from using solutions to the Helmholtz equation as basis functions. We present and analyze such a method for the scattering of two-dimensional scalar waves from a polygonal domain that achieves exponential convergence purely by increasing the number of basis functions in each element. Key ingredients are the use of basis functions that capture the singularities at corners and the representation of the scattered field towards infinity by a combination of fundamental solutions. The solution is obtained by minimizing a least-squares functional, which we discretize in such a way that a matrix least-squares problem is obtained. We give computable exponential bounds on the rate of convergence of the least-squares functional that are in very good agreement with the observed numerical convergence. Challenging numerical examples, including a nonconvex polygon with several corner singularities, and a cavity domain, are solved to around 10 digits of accuracy with a few seconds of CPU time. The examples are implemented concisely with MPSpack, a MATLAB toolbox for wave computations with nonpolynomial basis functions, developed by the authors. A code example is included
Reviving the Method of Particular Solutions
Fox, Henrici and Moler made famous a "Method of Particular Solutions" for computing eigenvalues and eigenmodes of the Laplacian in planar regions such as polygons. We explain why their formulation of this method breaks down when applied to regions that are insufficiently simple and propose a modification that avoids these difficulties. The crucial changes are to introduce points in the interior of the region as well as on the boundary and to minimize a subspace angle rather than just a singular value or a determinant
Computations of eigenvalue avoidance in planar domains
The phenomenon of eigenvalue avoidance is of growing interest in applications ranging from quantum mechanics to the theory of the Riemann zeta function. Until now the computation of eigenvalues of the Laplace operator in planar domains has been a difficult problem, making it hard to compute eigenvalue avoidance. Based on a new method this paper presents the computation of eigenvalue avoidance for such problems to almost machine precision
Adaptive BEM with optimal convergence rates for the Helmholtz equation
We analyze an adaptive boundary element method for the weakly-singular and
hypersingular integral equations for the 2D and 3D Helmholtz problem. The
proposed adaptive algorithm is steered by a residual error estimator and does
not rely on any a priori information that the underlying meshes are
sufficiently fine. We prove convergence of the error estimator with optimal
algebraic rates, independently of the (coarse) initial mesh. As a technical
contribution, we prove certain local inverse-type estimates for the boundary
integral operators associated with the Helmholtz equation
The Factorization method for three dimensional Electrical Impedance Tomography
The use of the Factorization method for Electrical Impedance Tomography has
been proved to be very promising for applications in the case where one wants
to find inhomogeneous inclusions in a known background. In many situations, the
inspected domain is three dimensional and is made of various materials. In this
case, the main challenge in applying the Factorization method consists in
computing the Neumann Green's function of the background medium. We explain how
we solve this difficulty and demonstrate the capability of the Factorization
method to locate inclusions in realistic inhomogeneous three dimensional
background media from simulated data obtained by solving the so-called complete
electrode model. We also perform a numerical study of the stability of the
Factorization method with respect to various modelling errors.Comment: 16 page
- …