1,107 research outputs found

    Out FOXing Parkinson Disease: Where Development Meets Neurodegeneration

    Get PDF
    The central survival role of FOX proteins may allow a unified view of the genetic and environmental factors that cause Parkinson disease

    Open drug discovery in Alzheimer\u27s disease.

    Get PDF
    Alzheimer\u27s disease (AD) drug discovery has focused on a set of highly studied therapeutic hypotheses, with limited success. The heterogeneous nature of AD processes suggests that a more diverse, systems-integrated strategy may identify new therapeutic hypotheses. Although many target hypotheses have arisen from systems-level modeling of human disease, in practice and for many reasons, it has proven challenging to translate them into drug discovery pipelines. First, many hypotheses implicate protein targets and/or biological mechanisms that are under-studied, meaning there is a paucity of evidence to inform experimental strategies as well as high-quality reagents to perform them. Second, systems-level targets are predicted to act in concert, requiring adaptations in how we characterize new drug targets. Here we posit that the development and open distribution of high-quality experimental reagents and informatic outputs-termed target enabling packages (TEPs)-will catalyze rapid evaluation of emerging systems-integrated targets in AD by enabling parallel, independent, and unencumbered research

    Ceruloplasmin Protects Against Rotenone-Induced Oxidative Stress and Neurotoxicity

    Get PDF
    To clarify the neuroprotective property of ceruloplasmin and the pathogenesis of aceruloplasminemia, we generated ceruloplasmin-deficient (CP−/−) mice on the C57BL/10 genetic background and further treated them with a mitochondrial complex I inhibitor, rotenone. There was no iron accumulation in the brains of CP−/− mice at least up to 60 weeks of age. Without rotenone treatment, CP−/− mice showed slight motor dysfunction compared with CP+/+ mice, but there were no detectable differences in the levels of oxidative stress markers between these two groups. A low dose of rotenone did not affect the mitochondrial complex I activity in our mice, however, it caused a significant change in motor behavior, neuropathology, or the levels of oxidative stress markers in CP−/− mice, but not in CP+/+ mice. Our data support that ceruloplasmin protects against rotenone-induced oxidative stress and neurotoxicity, probably through its antioxidant properties independently of its function of iron metabolism

    PINK1 and Parkin to control mitochondria remodeling

    Get PDF
    Parkinson's disease (PD), one of the most common neurodegenerative diseases, is characterized by movement disorders and a loss of dopaminergic (DA) neurons. PD mainly occurs sporadically, but may also result from genetic mutations in several PD-linked genes. Recently, genetic studies with Drosophila mutants, parkin and PINK1, two common PD-associated genes, demonstrated that Parkin acts downstream of PINK1 in maintaining mitochondrial function and integrity. Further studies revealed that PINK1 translocates Parkin to mitochondria and regulates critical mitochondrial remodeling processes. These findings, which suggest that mitochondrial dysfunction is a prominent cause of PD pathogenesis, provide valuable insights which may aid in the development of effective treatments for PD

    Protection by the NDI1 Gene against Neurodegeneration in a Rotenone Rat Model of Parkinson's Disease

    Get PDF
    It is widely recognized that mitochondrial dysfunction, most notably defects in the NADH-quinone oxidoreductase (complex I), is closely related to the etiology of sporadic Parkinson's disease (PD). In fact, rotenone, a complex I inhibitor, has been used for establishing PD models both in vitro and in vivo. A rat model with chronic rotenone exposure seems to reproduce pathophysiological conditions of PD more closely than acute mouse models as manifested by neuronal cell death in the substantia nigra and Lewy body-like cytosolic aggregations. Using the rotenone rat model, we investigated the protective effects of alternative NADH dehydrogenase (Ndi1) which we previously demonstrated to act as a replacement for complex I both in vitro and in vivo. A single, unilateral injection of recombinant adeno-associated virus carrying the NDI1 gene into the vicinity of the substantia nigra resulted in expression of the Ndi1 protein in the entire substantia nigra of that side. It was clear that the introduction of the Ndi1 protein in the substantia nigra rendered resistance to the deleterious effects caused by rotenone exposure as assessed by the levels of tyrosine hydroxylase and dopamine. The presence of the Ndi1 protein also prevented cell death and oxidative damage to DNA in dopaminergic neurons observed in rotenone-treated rats. Unilateral protection also led to uni-directional rotation of the rotenone-exposed rats in the behavioral test. The present study shows, for the first time, the powerful neuroprotective effect offered by the Ndi1 enzyme in a rotenone rat model of PD

    14-3-3theta Protects against Neurotoxicity in a Cellular Parkinson's Disease Model through Inhibition of the Apoptotic Factor Bax

    Get PDF
    Disruption of 14-3-3 function by alpha-synuclein has been implicated in Parkinson's disease. As 14-3-3s are important regulators of cell death pathways, disruption of 14-3-3s could result in the release of pro-apoptotic factors, such as Bax. We have previously shown that overexpression of 14-3-3θ reduces cell loss in response to rotenone and MPP+ in dopaminergic cell culture and reduces cell loss in transgenic C. elegans that overexpress alpha-synuclein. In this study, we investigate the mechanism for 14-3-3θ's neuroprotection against rotenone toxicity. While 14-3-3s can inhibit many pro-apoptotic factors, we demonstrate that inhibition of one factor in particular, Bax, is important to 14-3-3s' protection against rotenone toxicity in dopaminergic cells. We found that 14-3-3θ overexpression reduced Bax activation and downstream signaling events, including cytochrome C release and caspase 3 activation. Pharmacological inhibition or shRNA knockdown of Bax provided protection against rotenone, comparable to 14-3-3θ's neuroprotective effects. A 14-3-3θ mutant incapable of binding Bax failed to protect against rotenone. These data suggest that 14-3-3θ's neuroprotective effects against rotenone are at least partially mediated by Bax inhibition and point to a potential therapeutic role of 14-3-3s in Parkinson's disease

    The unilateral nigral lesion induces dramatic bilateral modification on rat brain monoamine neurochemistry

    Get PDF
    6-Hydroxydopamine (6-OHDA) is a neurotoxic compound commonly used to induce dopamine (DA) depletion in the nigrostriatal system, mimicking Parkinson's disease (PD) in animals. The aim of the present study was to evaluate the 7-day effect of unilateral nigral lesion on rat brain monoamine neurochemistry. Five brain regions were examined: the brain stem, cerebellum, hippocampus, striatum, and cortex. 6-OHDA-unilateral lesion dramatically modified DA, serotonin (5-HT) and their metabolites contents in both sides of the different brain nuclei. Furthermore, unilateral 6-OHDA lesion reduced DA and 5-HT contents and produced a robust inversion of their turnover in the nonlesioned side compared to sham-operated rats. These data suggest that 6-OHDA unilateral nigral lesion produces bilateral monoamine level modifications, and this piece of evidence should be taken into account when one interprets data from animal models of unilateral PD.peer-reviewe

    Stereotaxical Infusion of Rotenone: A Reliable Rodent Model for Parkinson's Disease

    Get PDF
    A clinically-related animal model of Parkinson's disease (PD) may enable the elucidation of the etiology of the disease and assist the development of medications. However, none of the current neurotoxin-based models recapitulates the main clinical features of the disease or the pathological hallmarks, such as dopamine (DA) neuron specificity of degeneration and Lewy body formation, which limits the use of these models in PD research. To overcome these limitations, we developed a rat model by stereotaxically (ST) infusing small doses of the mitochondrial complex-I inhibitor, rotenone, into two brain sites: the right ventral tegmental area and the substantia nigra. Four weeks after ST rotenone administration, tyrosine hydroxylase (TH) immunoreactivity in the infusion side decreased by 43.7%, in contrast to a 75.8% decrease observed in rats treated systemically with rotenone (SYS). The rotenone infusion also reduced the DA content, the glutathione and superoxide dismutase activities, and induced alpha-synuclein expression, when compared to the contralateral side. This ST model displays neither peripheral toxicity or mortality and has a high success rate. This rotenone-based ST model thus recapitulates the slow and specific loss of DA neurons and better mimics the clinical features of idiopathic PD, representing a reliable and more clinically-related model for PD research

    Oxidative stress induces degradation of mitochondrial DNA

    Get PDF
    Mitochondrial DNA (mtDNA) is located in close proximity of the respiratory chains, which are the main cellular source of reactive oxygen species (ROS). ROS can induce oxidative base lesions in mtDNA and are believed to be an important cause of the mtDNA mutations, which accumulate with aging and in diseased states. However, recent studies indicate that cumulative levels of base substitutions in mtDNA can be very low even in old individuals. Considering the reduced complement of DNA repair pathways available in mitochondria and higher susceptibility of mtDNA to oxidative damage than nDNA, it is presently unclear how mitochondria manage to maintain the integrity of their genetic information in the face of the permanent exposure to ROS. Here we show that oxidative stress can lead to the degradation of mtDNA and that strand breaks and abasic sites prevail over mutagenic base lesions in ROS-damaged mtDNA. Furthermore, we found that inhibition of base excision repair enhanced mtDNA degradation in response to both oxidative and alkylating damage. These observations suggest a novel mechanism for the protection of mtDNA against oxidative insults whereby a higher incidence of lesions to the sugar–phosphate backbone induces degradation of damaged mtDNA and prevents the accumulation of mutagenic base lesions
    corecore