64 research outputs found

    Transformations of High-Level Synthesis Codes for High-Performance Computing

    Full text link
    Specialized hardware architectures promise a major step in performance and energy efficiency over the traditional load/store devices currently employed in large scale computing systems. The adoption of high-level synthesis (HLS) from languages such as C/C++ and OpenCL has greatly increased programmer productivity when designing for such platforms. While this has enabled a wider audience to target specialized hardware, the optimization principles known from traditional software design are no longer sufficient to implement high-performance codes. Fast and efficient codes for reconfigurable platforms are thus still challenging to design. To alleviate this, we present a set of optimizing transformations for HLS, targeting scalable and efficient architectures for high-performance computing (HPC) applications. Our work provides a toolbox for developers, where we systematically identify classes of transformations, the characteristics of their effect on the HLS code and the resulting hardware (e.g., increases data reuse or resource consumption), and the objectives that each transformation can target (e.g., resolve interface contention, or increase parallelism). We show how these can be used to efficiently exploit pipelining, on-chip distributed fast memory, and on-chip streaming dataflow, allowing for massively parallel architectures. To quantify the effect of our transformations, we use them to optimize a set of throughput-oriented FPGA kernels, demonstrating that our enhancements are sufficient to scale up parallelism within the hardware constraints. With the transformations covered, we hope to establish a common framework for performance engineers, compiler developers, and hardware developers, to tap into the performance potential offered by specialized hardware architectures using HLS

    Slim Fly: A Cost Effective Low-Diameter Network Topology

    Full text link
    Abstract—We introduce a high-performance cost-effective net-work topology called Slim Fly that approaches the theoretically optimal network diameter. Slim Fly is based on graphs that approximate the solution to the degree-diameter problem. We analyze Slim Fly and compare it to both traditional and state-of-the-art networks. Our analysis shows that Slim Fly has significant advantages over other topologies in latency, bandwidth, resiliency, cost, and power consumption. Finally, we propose deadlock-free routing schemes and physical layouts for large computing centers as well as a detailed cost and power model. Slim Fly enables constructing cost effective and highly resilient datacenter and HPC networks that offer low latency and high bandwidth under different HPC workloads such as stencil or graph computations. I

    RapidChiplet: A Toolchain for Rapid Design Space Exploration of Chiplet Architectures

    Full text link
    Chiplet architectures are a promising paradigm to overcome the scaling challenges of monolithic chips. Chiplets offer heterogeneity, modularity, and cost-effectiveness. The design space of chiplet architectures is huge as there are many degrees of freedom such as the number, size and placement of chiplets, the topology of the inter-chiplet interconnect and many more. Existing tools for cost and performance prediction are often too slow to explore this design space. We present RapidChiplet, a fast, open-source toolchain to predict latency and throughput of the inter-chiplet interconnect, as well as a chip's manufacturing cost and thermal stability

    HexaMesh: Scaling to Hundreds of Chiplets with an Optimized Chiplet Arrangement

    Full text link
    2.5D integration is an important technique to tackle the growing cost of manufacturing chips in advanced technology nodes. This poses the challenge of providing high-performance inter-chiplet interconnects (ICIs). As the number of chiplets grows to tens or hundreds, it becomes infeasible to hand-optimize their arrangement in a way that maximizes the ICI performance. In this paper, we propose HexaMesh, an arrangement of chiplets that outperforms a grid arrangement both in theory (network diameter reduced by 42%; bisection bandwidth improved by 130%) and in practice (latency reduced by 19%; throughput improved by 34%). MexaMesh enables large-scale chiplet designs with high-performance ICIs

    Sparse Hamming Graph: A Customizable Network-on-Chip Topology

    Full text link
    Chips with hundreds to thousands of cores require scalable networks-on-chip (NoCs). Customization of the NoC topology is necessary to reach the diverse design goals of different chips. We introduce sparse Hamming graph, a novel NoC topology with an adjustable costperformance trade-off that is based on four NoC topology design principles we identified. To efficiently customize this topology, we develop a toolchain that leverages approximate floorplanning and link routing to deliver fast and accurate cost and performance predictions. We demonstrate how to use our methodology to achieve desired cost-performance trade-offs while outperforming established topologies in cost, performance, or both

    Learning Combinatorial Node Labeling Algorithms

    Full text link
    We present a graph neural network to learn graph coloring heuristics using reinforcement learning. Our learned deterministic heuristics give better solutions than classical degree-based greedy heuristics and only take seconds to evaluate on graphs with tens of thousands of vertices. As our approach is based on policy-gradients, it also learns a probabilistic policy as well. These probabilistic policies outperform all greedy coloring baselines and a machine learning baseline. Our approach generalizes several previous machine-learning frameworks, which applied to problems like minimum vertex cover. We also demonstrate that our approach outperforms two greedy heuristics on minimum vertex cover
    • …
    corecore