55 research outputs found

    Geologic Map of the Steamboat Mountain and Bible Spring Quadrangles, Western Iron County, Utah

    Get PDF
    Geology mapped in 1980 with the assistance of Lehi F. Hintze and students in the Brigham Young University summer geology field course. This report includes geological maps along with a detailed key

    Tertiary Minette and Melanephelinite Dikes, Wasatch Plateau, Utah - Records of Mantle Heterogeneities and Changing Tectonics

    Get PDF
    A swarm of minette and melanephelinite dikes is exposed over 2500 km2 in and near the Wasatch Plateau, central Utah, along the western margin of the Colorado Plateaus in the transition zone with the Basin and Range province. To date, 110 vertical dikes in 25 dike sets have been recognized. Strikes shift from about N80-degrees-W for 24 Ma dikes, to about N60-degrees-W for 18 Ma, to due north for 8-7 m.y. These orientations are consistent with a shift from east-west Oligocene compression associated with subduction to east-west late Miocene crustal extension. Minettes are the most common rock type; mica-rich minette and mica-bearing melanephelinite occurs in 24 Ma dikes, whereas more ordinary minette is found in 8-7 Ma dikes. One melanephelinite dike is 18 Ma. These mafic alkaline rocks are transitional to one another in modal and major element composition but have distinctive trace element patterns and isotopic compositions; they appear to have crystallized from primitive magmas. Major, trace element, and Nd-Sr isotopic data indicate that melanephelinite, which has similarities to ocean island basalt, was derived from small degree melts of mantle with a chondritic Sm/Nd ratio probably located in the asthenosphere, but it is difficult to rule out a lithospheric source. In contrast, mica-bearing rocks (mica melanephelinite and both types of minette) are more potassic and have trace element patterns with strong Nb-Ta depletions and Sr-Nd isotopic compositions caused by involvement with a component from heterogeneously enriched lithospheric mantle with long-term enrichment of Rb or light rare earth elements (REE) (epsilon Nd as low as - 15 in minette). Light REE enrichment must have occurred anciently in the mid-Proterozoic when the lithosphere was formed and is not a result of Cenozoic subduction processes. After about 25 Ma, foundering of the subducting Farallon plate may have triggered upwelling of warm asthenospheric mantle to the base of the lithosphere. Melanephelinite magma may have separated from the asthenosphere and, while rising through the lithosphere, provided heat for lithospheric magma generation. Varying degrees of interaction between melanephelinite and small potassic melt fractions derived from the lithospheric mantle can explain the gradational character of the melanephelinite to minette suite

    Diagnostic accuracy of liquid biopsy in endometrial cancer

    Get PDF
    Background: Liquid biopsy is a minimally invasive collection of a patient body fluid sample. In oncology, they offer several advantages compared to traditional tissue biopsies. However, the potential of this method in endometrial cancer (EC) remains poorly explored. We studied the utility of tumor educated platelets (TEPs) and circulating tumor DNA (ctDNA) for preoperative EC diagnosis, including histology determination. Methods: TEPs from 295 subjects (53 EC patients, 38 patients with benign gynecologic conditions, and 204 healthy women) were RNA-sequenced. DNA sequencing data were obtained for 519 primary tumor tissues and 16 plasma samples. Artificial intelligence was applied to sample classification. Results: Platelet-dedicated classifier yielded AUC of 97.5% in the test set when discriminating between healthy subjects and cancer patients. However, the discrimination between endometrial cancer and benign gynecologic conditions was more challenging, with AUC of 84.1%. ctDNA-dedicated classifier discriminated primary tumor tissue samples with AUC of 96% and ctDNA blood samples with AUC of 69.8%. Conclusions: Liquid biopsies show potential in EC diagnosis. Both TEPs and ctDNA profiles coupled with artificial intelligence constitute a source of useful information. Further work involving more cases is warranted.publishedVersio

    Glioblastomas exploit truncated O-linked glycans for local and distant immune modulation via the macrophage galactose-type lectin

    Get PDF
    Glioblastoma is the most aggressive brain malignancy, for which immunotherapy has failed to prolong survival. Glioblastoma-associated immune infiltrates are dominated by tumor-associated macrophages and microglia (TAMs), which are key mediators of immune suppression and resistance to immunotherapy. We and others demonstrated aberrant expression of glycans in different cancer types. These tumor-associated glycans trigger inhibitory signaling in TAMs through glycan-binding receptors. We investigated the glioblastoma glycocalyx as a tumor-intrinsic immune suppressor. We detected increased expression of both tumor-associated truncated O-linked glycans and their receptor, macrophage galactose-type lectin (MGL), on CD163+ TAMs in glioblastoma patient-derived tumor tissues. In an immunocompetent orthotopic glioma mouse model overexpressing truncated O-linked glycans (MGL ligands), high-dimensional mass cytometry revealed a wide heterogeneity of infiltrating myeloid cells with increased infiltration of PD-L1+ TAMs as well as distant alterations in the bone marrow (BM). Our results demonstrate that glioblastomas exploit cell surface O-linked glycans for local and distant immune modulation.Fil: Dusoswa, Sophie A.. Vrije Universiteit Amsterdam; Países BajosFil: Verhoeff, Jan. Vrije Universiteit Amsterdam; Países BajosFil: Abels, Erik. Vrije Universiteit Amsterdam; Países BajosFil: Mendez Huergo, Santiago Patricio. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Croci Russo, Diego Omar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos. Universidad Nacional de Cuyo. Facultad de Ciencias Médicas. Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos; ArgentinaFil: Kuijper, Lisan H.. Vrije Universiteit Amsterdam; Países BajosFil: de Miguel, Elena. Vrije Universiteit Amsterdam; Países BajosFil: Wouters, Valerie M. C. J.. Vrije Universiteit Amsterdam; Países BajosFil: Best, Myron G.. Vrije Universiteit Amsterdam; Países BajosFil: Rodriguez, Ernesto. Vrije Universiteit Amsterdam; Países BajosFil: Cornelissen, Lenneke A.M.. Vrije Universiteit Amsterdam; Países BajosFil: van Vliet, Sandra J.. Vrije Universiteit Amsterdam; Países BajosFil: Wesseling, Pieter. Vrije Universiteit Amsterdam; Países BajosFil: Breakefield, Xandra O.. Vrije Universiteit Amsterdam; Países BajosFil: Noske, David P.. Vrije Universiteit Amsterdam; Países BajosFil: Würdinger, Thomas. Harvard Medical School; Estados UnidosFil: Broekman, Marike L.D.. Harvard Medical School; Estados UnidosFil: Rabinovich, Gabriel Adrián. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: van Kooyk, Yvette. Vrije Universiteit Amsterdam; Países BajosFil: Garcia Vallejo, Juan J.. Vrije Universiteit Amsterdam; Países Bajo

    Detection and localization of early- and late-stage cancers using platelet RNA

    Get PDF
    Cancer patients benefit from early tumor detection since treatment outcomes are more favorable for less advanced cancers. Platelets are involved in cancer progression and are considered a promising biosource for cancer detection, as they alter their RNA content upon local and systemic cues. We show that tumor-educated platelet (TEP) RNA-based blood tests enable the detection of 18 cancer types. With 99% specificity in asymptomatic controls, thromboSeq correctly detected the presence of cancer in two-thirds of 1,096 blood samples from stage I–IV cancer patients and in half of 352 stage I–III tumors. Symptomatic controls, including inflammatory and cardiovascular diseases, and benign tumors had increased false-positive test results with an average specificity of 78%. Moreover, thromboSeq determined the tumor site of origin in five different tumor types correctly in over 80% of the cancer patients. These results highlight the potential properties of TEP-derived RNA panels to supplement current approaches for blood-based cancer screening

    Tumor-educated platelets as a noninvasive biomarker source for cancer detection and progression monitoring

    No full text
    Liquid biopsies represent a potential revolution in cancer diagnostics as a noninvasive method for detecting and monitoring diseases, complementary to or even replacing current tissue biopsy approaches. Several blood-based biosources and biomolecules, such as cell-free DNA and RNA, proteins, circulating tumor cells, and extracellular vesicles, have been explored for molecular test development. We recently discovered the potential of tumor-educated blood platelets (TEP) as a noninvasive biomarker trove for RNA biomarker panels. TEPs are involved in the progression and spread of several solid tumors, and spliced TEP RNA surrogate signatures can provide specific information on the presence, location, and molecular characteristics of cancers. So far, TEP samples from patients with different tumor types, including lung, brain, and breast cancers, have been tested, and it has been shown that TEPs from patients with cancer are distinct from those with inflammatory and other noncancerous diseases. It remains to be investigated how platelets are "educated," which mechanisms cause intraplatelet RNA splicing, and whether the relative contribution of specific platelet subpopulations changes in patients with cancer. Ultimately, TEP RNA may complement currently used biosources and biomolecules employed for liquid biopsy diagnosis, potentially enhancing the detection of cancer in an early stage and facilitating noninvasive disease monitoring

    Platelet RNA as Pan-Tumor Biomarker for Cancer Detection

    No full text
    Blood-based liquid biopsies are considered a screening approach for early cancer detection. Sequencing technologies enable in-depth analyses of nucleic acids, including mutant cell-free (cf) DNA in the plasma. However, in the blood of patients with early-stage cancer the detection level of mutant cfDNA is relatively low, and complicated by the natural presence of noncancer cfDNA mutants attributed to aging-related processes. Consequently, analysis of methylated cfDNA patterns and alternative approaches such as tumor-educated platelets are gaining traction for the detection of early-stage tumors. Here, we dissect the use of platelet RNA as a potential biomarker for the development of early-stage, pan-cancer blood tests
    corecore