197 research outputs found

    Natural Killer Cells Promote Early CD8 T Cell Responses against Cytomegalovirus

    Get PDF
    Understanding the mechanisms that help promote protective immune responses to pathogens is a major challenge in biomedical research and an important goal for the design of innovative therapeutic or vaccination strategies. While natural killer (NK) cells can directly contribute to the control of viral replication, whether, and how, they may help orchestrate global antiviral defense is largely unknown. To address this question, we took advantage of the well-defined molecular interactions involved in the recognition of mouse cytomegalovirus (MCMV) by NK cells. By using congenic or mutant mice and wild-type versus genetically engineered viruses, we examined the consequences on antiviral CD8 T cell responses of specific defects in the ability of the NK cells to control MCMV. This system allowed us to demonstrate, to our knowledge for the first time, that NK cells accelerate CD8 T cell responses against a viral infection in vivo. Moreover, we identify the underlying mechanism as the ability of NK cells to limit IFN-α/β production to levels not immunosuppressive to the host. This is achieved through the early control of cytomegalovirus, which dramatically reduces the activation of plasmacytoid dendritic cells (pDCs) for cytokine production, preserves the conventional dendritic cell (cDC) compartment, and accelerates antiviral CD8 T cell responses. Conversely, exogenous IFN-α administration in resistant animals ablates cDCs and delays CD8 T cell activation in the face of NK cell control of viral replication. Collectively, our data demonstrate that the ability of NK cells to respond very early to cytomegalovirus infection critically contributes to balance the intensity of other innate immune responses, which dampens early immunopathology and promotes optimal initiation of antiviral CD8 T cell responses. Thus, the extent to which NK cell responses benefit the host goes beyond their direct antiviral effects and extends to the prevention of innate cytokine shock and to the promotion of adaptive immunity

    An Alpha-Catulin Homologue Controls Neuromuscular Function through Localization of the Dystrophin Complex and BK Channels in Caenorhabditis elegans

    Get PDF
    The large conductance, voltage- and calcium-dependent potassium (BK) channel serves as a major negative feedback regulator of calcium-mediated physiological processes and has been implicated in muscle dysfunction and neurological disorders. In addition to membrane depolarization, activation of the BK channel requires a rise in cytosolic calcium. Localization of the BK channel near calcium channels is therefore critical for its function. In a genetic screen designed to isolate novel regulators of the Caenorhabditis elegans BK channel, SLO-1, we identified ctn-1, which encodes an α-catulin homologue with homology to the cytoskeletal proteins α-catenin and vinculin. ctn-1 mutants resemble slo-1 loss-of-function mutants, as well as mutants with a compromised dystrophin complex. We determined that CTN-1 uses two distinct mechanisms to localize SLO-1 in muscles and neurons. In muscles, CTN-1 utilizes the dystrophin complex to localize SLO-1 channels near L-type calcium channels. In neurons, CTN-1 is involved in localizing SLO-1 to a specific domain independent of the dystrophin complex. Our results demonstrate that CTN-1 ensures the localization of SLO-1 within calcium nanodomains, thereby playing a crucial role in muscles and neurons

    Psychophysical Investigations into the Role of Low-Threshold C Fibres in Non-Painful Affective Processing and Pain Modulation

    Get PDF
    We recently showed that C low-threshold mechanoreceptors (CLTMRs) contribute to touch-evoked pain (allodynia) during experimental muscle pain. Conversely, in absence of ongoing pain, the activation of CLTMRs has been shown to correlate with a diffuse sensation of pleasant touch. In this study, we evaluated (1) the primary afferent fibre types contributing to positive (pleasant) and negative (unpleasant) affective touch and (2) the effects of tactile stimuli on tonic muscle pain by varying affective attributes and frequency parameters. Psychophysical observations were made in 10 healthy participants. Two types of test stimuli were applied: stroking stimulus using velvet or sandpaper at speeds of 0.1, 1.0 and 10.0 cm/s; focal vibrotactile stimulus at low (20 Hz) or high (200 Hz) frequency. These stimuli were applied in the normal condition (i.e. no experimental pain) and following the induction of muscle pain by infusing hypertonic saline (5%) into the tibialis anterior muscle. These observations were repeated following the conduction block of myelinated fibres by compression of sciatic nerve. In absence of muscle pain, all participants reliably linked velvet-stroking to pleasantness and sandpaper-stroking to unpleasantness (no pain). Likewise, low-frequency vibration was linked to pleasantness and high-frequency vibration to unpleasantness. During muscle pain, the application of previously pleasant stimuli resulted in overall pain relief, whereas the application of previously unpleasant stimuli resulted in overall pain intensification. These effects were significant, reproducible and persisted following the blockade of myelinated fibres. Taken together, these findings suggest the role of low-threshold C fibres in affective and pain processing. Furthermore, these observations suggest that temporal coding need not be limited to discriminative aspects of tactile processing, but may contribute to affective attributes, which in turn predispose individual responses towards excitatory or inhibitory modulation of pain

    Fragility of epidermis and its consequence in dermatology

    Get PDF
    The skin is the largest organ of the body, providing a protective barrier against bacteria, chemicals and physical insults while maintaining homeostasis in the internal environment. Such a barrier function the skin ensures protection against excessive water loss. The skin's immune defence consists of several facets, including immediate, non-specific mechanisms (innate immunity) and delayed, stimulus-specific responses (adaptive immunity), which contribute to fending off a wide range of potentially invasive microorganisms. This article is an overview of all known data about 'fragile skin'. Fragile skin is defined as skin with lower resistance to aggressions. Fragile skin can be classified into four categories up to its origin: physiological fragile skin (age, location), pathological fragile skin (acute and chronic), circumstantial fragile skin (due to environmental extrinsic factors or intrinsic factors such as stress) and iatrogenic fragile skin. This article includes the epidemiologic data, pathologic description of fragile skin with pathophysiological bases (mechanical and immunological role of skin barrier) and clinical description of fragile skin in atopic dermatitis, in acne, in rosacea, in psoriasis, in contact dermatitis and other dermatologic pathologies. This article includes also clinical cases and differential diagnosis of fragile skin (reactive skin) in face in adult population. In conclusion, fragile skin is very frequent worldwide and its prevalence varies between 25% and 52% in Caucasian, African and Asian population. © 2014 European Academy of Dermatology and Venereology

    Chronic Hypoxia Impairs Muscle Function in the Drosophila Model of Duchenne's Muscular Dystrophy (DMD)

    Get PDF
    Duchenne's muscular dystrophy (DMD) is a severe progressive myopathy caused by mutations in the DMD gene leading to a deficiency of the dystrophin protein. Due to ongoing muscle necrosis in respiratory muscles late-stage DMD is associated with respiratory insufficiency and chronic hypoxia (CH). To understand the effects of CH on dystrophin-deficient muscle in vivo, we exposed the Drosophila model for DMD (dmDys) to CH during a 16-day ascent to the summit of Mount Denali/McKinley (6194 meters above sea level). Additionally, dmDys and wild type (WT) flies were also exposed to CH in laboratory simulations of high altitude hypoxia. Expression profiling was performed using Affymetrix GeneChips® and validated using qPCR. Hypoxic dmDys differentially expressed 1281 genes, whereas the hypoxic WT flies differentially expressed 56 genes. Interestingly, a number of genes (e.g. heat shock proteins) were discordantly regulated in response to CH between dmDys and WT. We tested the possibility that the disparate molecular responses of dystrophin-deficient tissues to CH could adversely affect muscle by performing functional assays in vivo. Normoxic and CH WT and dmDys flies were challenged with acute hypoxia and time-to-recover determined as well as subjected to climbing tests. Impaired performance was noted for CH-dmDys compared to normoxic dmDys or WT flies (rank order: Normoxic-WT ≈ CH-WT> Normoxic-dmDys> CH-dmDys). These data suggest that dystrophin-deficiency is associated with a disparate, pathological hypoxic stress response(s) and is more sensitive to hypoxia induced muscle dysfunction in vivo. We hypothesize that targeting/correcting the disparate molecular response(s) to hypoxia may offer a novel therapeutic strategy in DMD

    Harnessing Wicked Problems in Multi-stakeholder Partnerships

    Get PDF
    Despite the burgeoning literature on the governance and impact of cross-sector partnerships in the past two decades, the debate on how and when these collaborative arrangements address globally relevant problems and contribute to systemic change remains open. Building upon the notion of wicked problems and the literature on governing such wicked problems, this paper defines harnessing problems in multi-stakeholder partnerships (MSPs) as the approach of taking into account the nature of the problem and of organizing governance processes accordingly. The paper develops an innovative analytical framework that conceptualizes MSPs in terms of three governance processes (deliberation, decision-making and enforce-ment) harnessing three key dimensions of wicked problems (knowledge uncertainty, value conflict and dynamic complexity). The Roundtable on Sustainable Palm Oil provides an illustrative case study on how this analytical framework describes and explains organizational change in partnerships from a problem-based perspective. The framework can be used to better understand and predict the complex relationships between MSP governance processes, systemic change and societal problems, but also as a guiding tool in (re-)organizing governance processes to continuously re-assess the problems over time and address them accordingly

    The Atypical Calpains: Evolutionary Analyses and Roles in Caenorhabditis elegans Cellular Degeneration

    Get PDF
    The calpains are physiologically important Ca2+-activated regulatory proteases, which are divided into typical or atypical sub-families based on constituent domains. Both sub-families are present in mammals, but our understanding of calpain function is based primarily on typical sub-family members. Here, we take advantage of the model organism Caenorhabditis elegans, which expresses only atypical calpains, to extend our knowledge of the phylogenetic evolution and function of calpains. We provide evidence that a typical human calpain protein with a penta EF hand, detected using custom profile hidden Markov models, is conserved in ancient metazoans and a divergent clade. These analyses also provide evidence for the lineage-specific loss of typical calpain genes in C. elegans and Ciona, and they reveal that many calpain-like genes lack an intact catalytic triad. Given the association between the dysregulation of typical calpains and human degenerative pathologies, we explored the phenotypes, expression profiles, and consequences of inappropriate reduction or activation of C. elegans atypical calpains. These studies show that the atypical calpain gene, clp-1, contributes to muscle degeneration and reveal that clp-1 activity is sensitive to genetic manipulation of [Ca2+]i. We show that CLP-1 localizes to sarcomeric sub-structures, but is excluded from dense bodies (Z-disks). We find that the muscle degeneration observed in a C. elegans model of dystrophin-based muscular dystrophy can be suppressed by clp-1 inactivation and that nemadipine-A inhibition of the EGL-19 calcium channel reveals that Ca2+ dysfunction underlies the C. elegans MyoD model of myopathy. Taken together, our analyses highlight the roles of calcium dysregulation and CLP-1 in muscle myopathies and suggest that the atypical calpains could retain conserved roles in myofilament turnover
    corecore