48 research outputs found

    Suppression of low-density lipoprotein oxidation, vascular smooth muscle cell proliferation and migration by a herbal extract of Radix Astragali, Radix Codonopsis and Cortex Lycii

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Atherosclerosis is a major cause of death in developed world. Atherosclerosis is characterized by low-density lipoprotein deposition in the arterial wall which ultimately begets the formation of lesions. Rupture of lesions finally leads to clinical events such as heart attack and stroke. Atherosclerosis is a complication associated with diabetes. In patients with diabetes, the risk of atherosclerosis is three to five folds greater than in non-diabetics. Our previous study showed that a herbal extract of <it>Radix Astragali, Radix Codonopsis </it>and <it>Cortex Lycii</it>, namely SR10, could improve glucose homeostasis both <it>in vitro </it>and <it>in vivo</it>. In this study, we want to further investigate the efficacy of SR10 in treating atherosclerosis.</p> <p>Method</p> <p>The inhibitory effect of SR10 on low-density lipoprotein oxidation was investigated using free radical-induced erythrocyte hemolysis model and copper ion-induced low-density lipoprotein oxidation model. Since vascular smooth muscle cell proliferation and migration are important processes in atherogenesis, we also examined the effect of SR10 in inhibiting these events.</p> <p>Results</p> <p>Our results showed that SR10 inhibited erythrocyte hemolysis with IC<sub>50 </sub>value at 0.25 mg/ml and significantly prolonged low-density lipoprotein oxidation <it>in vitro</it>. SR10 attenuated platelet derived growth factor-BB-induced vascular smooth muscle cell proliferation by promoting cell cycle arrest at G<sub>0</sub>/G<sub>1 </sub>phase as well as inhibiting vascular smooth muscle cell migration.</p> <p>Conclusion</p> <p>The potential application of SR10 in treating atherosclerosis has been implied in this study. Animal model will be needed to further verify the efficacy of SR10 in future.</p

    Current and Future Drug Targets in Weight Management

    Get PDF
    Obesity will continue to be one of the leading causes of chronic disease unless the ongoing rise in the prevalence of this condition is reversed. Accumulating morbidity figures and a shortage of effective drugs have generated substantial research activity with several molecular targets being investigated. However, pharmacological modulation of body weight is extremely complex, since it is essentially a battle against one of the strongest human instincts and highly efficient mechanisms of energy uptake and storage. This review provides an overview of the different molecular strategies intended to lower body weight or adipose tissue mass. Weight-loss drugs in development include molecules intended to reduce the absorption of lipids from the GI tract, various ways to limit food intake, and compounds that increase energy expenditure or reduce adipose tissue size. A number of new preparations, including combinations of the existing drugs topiramate plus phentermine, bupropion plus naltrexone, and the selective 5-HT2C agonist lorcaserin have recently been filed for approval. Behind these leading candidates are several other potentially promising compounds and combinations currently undergoing phase II and III testing. Some interesting targets further on the horizon are also discussed

    Nanotechnology advances towards development of targeted-treatment for obesity

    Get PDF
    Obesity through its association with type 2 diabetes (T2D), cancer and cardiovascular diseases (CVDs), poses a serious health threat, as these diseases contribute to high mortality rates. Pharmacotherapy alone or in combination with either lifestyle modifcation or surgery, is reliable in maintaining a healthy body weight, and preventing progression to obesity-induced diseases. However, the anti-obesity drugs are limited by non-specifcity and unsustainable weight loss efects. As such, novel and improved approaches for treatment of obesity are urgently needed. Nanotechnology-based therapies are investigated as an alternative strategy that can treat obesity and be able to overcome the drawbacks associated with conventional therapies. The review presents three nanotechnology-based anti-obesity strategies that target the white adipose tissues (WATs) and its vasculature for the reversal of obesity. These include inhibition of angiogenesis in the WATs, transformation of WATs to brown adipose tissues (BATs), and photothermal lipolysis of WATs. Compared to conventional therapy, the targeted-nanosystems have high tolerability, reduced side efects, and enhanced efcacy. These efects are reproducible using various nanocarriers (liposomes, polymeric and gold nanoparticles), thus providing a proof of concept that targeted nanotherapy can be a feasible strategy that can combat obesity and prevent its comorbiditie
    corecore