4 research outputs found

    How growth ability of multidrug-resistant Escherichia coli is affected by abiotic stress factors

    Get PDF
    The ability of multidrug-resistant Escherichia coli to adapt and grow in a wide range of different environmental conditions may be crucial to the global spread of antimicrobial resistance. The aim of this study was to evaluate the survival ability of 54 multidrug-resistant E. coli strains, isolated from three different biotopes (clinical setting, gull intestine, river water) when subjected to variations in pH (from 3 to 11) and salinity (from 0.5% to 6% of NaCl) and to nutrient deprivation. The growth of each isolate as well as of a reference strain was assessed during 168 h in every varying condition. Slight variations in the growth ability under some abiotic stress factors were recorded among the isolates from the different biotopes. Multidrug-resistant isolates from gull feces were found to be the more tolerant to environmental abiotic changes, while isolates from river water were the less tolerant. In addition, it was notorious that the carriage of antimicrobial resistance has a clear fitness cost in comparison with the susceptible (reference) strain, highlighting the necessity of reducing the selective pressure exerted by antibiotics. This study underlines the ecological hardness of multidrug-resistant E. coli isolates with a consequent ability to reach and colonize new host and environments

    Potential Antibacterial Activity of Carvacrol-Loaded Poly(DL-lactide-co-glycolide) (PLGA) Nanoparticles against Microbial Biofilm

    Get PDF
    The ability to form biofilms contributes significantly to the pathogenesis of many microbial infections, including a variety of ocular diseases often associated with the biofilm formation on foreign materials. Carvacrol (Car.) is an important component of essential oils and recently has attracted much attention pursuant to its ability to promote microbial biofilm disruption. In the present study Car. has been encapsulated in poly(dl-lactide-co-glycolide (PLGA) nanocapsules in order to obtain a suitable drug delivery system that could represent a starting point for developing new therapeutic strategies against biofilm-associated infections, such as improving the drug effect by associating an antimicrobial agent with a biofilm viscoelasticity modifier

    How Growth Ability of Multidrug-Resistant <i>Escherichia coli</i> Is Affected by Abiotic Stress Factors

    Get PDF
    The ability of multidrug-resistant Escherichia coli to adapt and grow in a wide range of different environmental conditions may be crucial to the global spread of antimicrobial resistance. The aim of this study was to evaluate the survival ability of 54 multidrug-resistant E. coli strains, isolated from three different biotopes (clinical setting, gull intestine, river water) when subjected to varia-tions in pH (from 3 to 11) and salinity (from 0.5 % to 6 % of NaCl) and to nutrient deprivation. The growth of each isolate as well as of a reference strain was assessed during 168 h in every varying condition. Slight variations in the growth ability under some abiotic stress factors were recorded among the isolates from the different biotopes. Multidrug-resistant isolates from gull feces were found to be the more tolerant to environmental abiotic changes, while isolates from river water were the less tolerant. In addition, it was notorious that the carriage of antimicrobial resistance has a clear fitness cost in comparison with the susceptible (reference) strain, highlighting the ne

    Coagulase-positive Staphylococcus: prevalence and antimicrobial resistance

    No full text
    Staphylococcus pseudintermedius is the most prevalent coagulase-positive Staphylococcus inhabitant of the skin and mucosa of dogs and cats, causing skin and soft tissue infections in these animals. In this study, coagulase-positive Staphylococcus species were isolated from companion animals, veterinary professionals, and objects from a clinical veterinary environment by using two particular culture media, Baird-Parker RPF agar and CHROMagar Staph aureus. Different morphology features of colonies on the media allowed the identification of the species, which was confirmed by performing a multiplex polymerase chain reaction (PCR). Among 23 animals, 15 (65.2%) harbored coagulase-positive Staphylococcus, being 12 Staphylococcus pseudintermedius carriers. Four out of 12 were methicillin-resistant S. pseudintermedius (MRSP). All veterinary professionals had coagulase-positive Staphylococcus (CoPS) species on their hands and two out of nine objects sampled harbored MRSP. The antimicrobial-resistance pattern was achieved for all isolates, revealing the presence of many multidrug-resistant CoPS, particularly S. pseudintermedius. The combined analysis of the antimicrobial-resistance patterns shown by the isolates led to the hypothesis that there is a possible crosscontamination and dissemination of S. aureus and S. pseudintermedius species between the three types of carriers sampled in this study that could facilitate the spread of the methicillin-resistance phenotype
    corecore