136 research outputs found

    Supersymmetric contributions to B -> D K and the determination of angle \gamma

    Full text link
    We analyze supersymmetric contributions to B^- -> D^0 K^- and B^- ->\bar{D}^0 K^- processes. We investigate the possibility that supersymmetric CP violating phases can affect our determination for the angle \gamma in the unitary triangle of Cabibbo-Kobayashi-Maskaw mixing matrix. We calculate the gluino and chargino contributions to b--> u(\bar{c}s) and b-->c(\bar{u}s) transitions in a model independent way by using the mass insertion approximation method. We also revise the D^0 - \bar{D}^0 mixing constraints on the mass insertions between the first and second generations of the up sector. We emphasize that in case of negligible D^0 -\bar{D}^0 mixing, one should consider simultaneous contributions from more than one mass insertion in order to be able to obtain the CP asymmetries of these processes within their 1\sigma experimental range. However, with a large D^0-\bar{D}^0 mixing, one finds a significant deviation between the two asymmetries and it becomes natural to have them of order the central values of their experimental measurements.Comment: 20 page

    On the possibility of a very light A^0 at low \tan\beta

    Full text link
    The searches at LEP II for the processes e^+e^-\to h^0Z and e^+e^-\to h^0A^0 in the Minimal Supersymmetric Standard Model (MSSM) fail to exclude regions of the m_h,m_A plane where \tan\beta <1, thus allowing a very light A^0 (m_A< 20 GeV). Such a parameter choice would predict a light H^\pm with m_{H^\pm}< m_W. Although the potentially large branching ratio for H^\pm \to A^0 W^* would ensure that H^\pm also escaped detection in direct searches at LEP II and the Tevatron Run I, we show that this elusive parameter space is overwhelmingly disfavoured by electroweak precision measurements.Comment: 11 pages, 2 figures, Revtex, references added, minor additions to tex

    Flavor changing Z-decays from scalar interactions at a Giga-Z Linear Collider

    Full text link
    The flavor changing decay Z -> d_I \bar{d}_J is investigated with special emphasis on the b \bar{s} final state. Various models for flavor violation are considered: two Higgs doublet models (2HDM's), supersymmetry (SUSY) with flavor violation in the up and down-type squark mass matrices and SUSY with flavor violation mediated by R-parity-violating interaction. We find that, within the SUSY scenarios for flavor violation, the branching ratio for the decay Z -> b \bar{s} can reach 10^{-6} for large \tan\beta values, while the typical size for this branching ratio in the 2HDM's considered is about two orders of magnitudes smaller at best. Thus, flavor changing SUSY signatures in radiative Z decays such as Z -> b \bar{s} may be accessible to future ``Z factories'' such as a Giga-Z version of the TESLA design.Comment: 27 pages, 15 figures, REVTeX4. A new section added and a few minor corrections were made in the tex

    Calculation of two-loop virtual corrections to b --> s l+ l- in the standard model

    Get PDF
    We present in detail the calculation of the virtual O(alpha_s) corrections to the inclusive semi-leptonic rare decay b --> s l+ l-. We also include those O(alpha_s) bremsstrahlung contributions which cancel the infrared and mass singularities showing up in the virtual corrections. In order to avoid large resonant contributions, we restrict the invariant mass squared s of the lepton pair to the range 0.05 < s/mb^2 < 0.25. The analytic results are represented as expansions in the small parameters s/mb^2, z = mc^2/mb^2 and s/(4 mc^2). The new contributions drastically reduce the renormalization scale dependence of the decay spectrum. For the corresponding branching ratio (restricted to the above s-range) the renormalization scale uncertainty gets reduced from +/-13% to +/-6.5%.Comment: 41 pages including 9 postscript figures; in version 2 some typos and inconsistent notation correcte

    Supersymmetric contributions to Bˉsϕπ0\bar{B}_s \to \phi \pi^0 and Bˉsϕρ0\bar{B}_s \to \phi \rho^0 decays in SCET

    Full text link
    We study the decay modes Bˉsϕπ0\bar{B}_s\to \phi \pi^0 and Bˉsϕρ0\bar{B}_s\to \phi \rho^0 using Soft Collinear Effective Theory. Within Standard Model and including the error due to the SU(3) breaking effect in the SCET parameters we find that BR Bˉsϕπ0=712+1+2×108\bar{B}_s\to \phi \pi^0 =7_{-1-2}^{+1+2}\times 10^{-8} and BR Bˉsϕπ0=914+1+3×108\bar{B}_s\to \phi \pi^0=9_{-1-4}^{+1+3}\times 10^{-8} corresponding to solution 1 and solution 2 of the SCET parameters respectively.For the decay mode Bˉsϕρ0\bar{B}_s\to \phi \rho^0, we find that BR Bˉsϕρ0=20.2112+1+9×108\bar{B}_s\to \phi \rho^0 = 20.2^{+1+9}_{-1-12}\times 10^{-8} and BR Bˉsϕρ0=34.01.522+1.5+15×108 \bar{B}_s\to \phi \rho^0 = 34.0^{+1.5 + 15}_{-1.5-22}\times 10^{-8} corresponding to solution 1 and solution 2 of the SCET parameters respectively. We extend our study to include supersymmetric models with non-universal A-terms where the dominant contributions arise from diagrams mediated by gluino and chargino exchanges. We show that gluino contributions can not lead to an enhancement of the branching ratios of Bˉsϕπ0\bar{B}_s\to \phi \pi^0 and Bˉsϕρ0\bar{B}_s\to \phi \rho^0. In addition, we show that SUSY contributions mediated by chargino exchange can enhance the branching ratio of Bˉsϕπ0\bar{B}_s\to \phi \pi^0 by about 14% with respect to the SM prediction. For the branching ratio of Bˉsϕρ0\bar{B}_s\to \phi \rho^0, we find that SUSY contributions can enhance its value by about 1% with respect to the SM prediction.Comment: 25 pages,5 figures, version accepted for publicatio

    SUSY GUT Model Building

    Full text link
    I discuss an evolution of SUSY GUT model building, starting with the construction of 4d GUTs, to orbifold GUTs and finally to orbifold GUTs within the heterotic string. This evolution is an attempt to obtain realistic string models, perhaps relevant for the LHC. This review is in memory of the sudden loss of Julius Wess, a leader in the field, who will be sorely missed.Comment: 24 pages, 14 figures, lectures given at PiTP 2008, Institute for Advanced Study, Princeton, to be published in the European Physical Journal

    Flavor Physics in an SO(10) Grand Unified Model

    Get PDF
    In supersymmetric grand-unified models, the lepton mixing matrix can possibly affect flavor-changing transitions in the quark sector. We present a detailed analysis of a model proposed by Chang, Masiero and Murayama, in which the near-maximal atmospheric neutrino mixing angle governs large new b -> s transitions. Relating the supersymmetric low-energy parameters to seven new parameters of this SO(10) GUT model, we perform a correlated study of several flavor-changing neutral current (FCNC) processes. We find the current bound on B(tau -> mu gamma) more constraining than B(B -> X_s gamma). The LEP limit on the lightest Higgs boson mass implies an important lower bound on tan beta, which in turn limits the size of the new FCNC transitions. Remarkably, the combined analysis does not rule out large effects in B_s-B_s-bar mixing and we can easily accomodate the large CP phase in the B_s-B_s-bar system which has recently been inferred from a global analysis of CDF and DO data. The model predicts a particle spectrum which is different from the popular Constrained Minimal Supersymmetric Standard Model (CMSSM). B(tau -> mu gamma) enforces heavy masses, typically above 1 TeV, for the sfermions of the degenerate first two generations. However, the ratio of the third-generation and first-generation sfermion masses is smaller than in the CMSSM and a (dominantly right-handed) stop with mass below 500 GeV is possible.Comment: 44 pages, 5 figures. Footnote and references added, minor changes, Fig. 2 corrected; journal versio
    corecore