186 research outputs found

    On the Axisymmetric Force-Free Pulsar Magnetosphere

    Full text link
    We investigate the axisymmetric magnetosphere of an aligned rotating magnetic dipole surrounded by an ideal force-free plasma. We concentrate on the magnetic field structure around the point of intersection of the separatrix between the open and closed field-line regions and the equatorial plane. We first study the case where this intersection point is located at the Light Cylinder. We find that in this case the separatrix equilibrium condition implies that all the poloidal current must return to the pulsar in the open-field region, i.e., that there should be no finite current carried by the separatrix/equator current sheet. We then perform an asymptotic analysis of the pulsar equation near the intersection point and find a unique self-similar solution; however, a Light Surface inevitably emerges right outside the Light Cylinder. We then perform a similar analysis for the situation where the intersection point lies somewhere inside the Light Cylinder, in which case a finite current flowing along the separatrix and the equator is allowed. We find a very simple behavior in this case, characterized by a 90-degree angle between the separatrix and the equator and by finite vertical field in the closed-field region. Finally, we discuss the implications of our results for global numerical studies of pulsar magnetospheres.Comment: 31 pages, including 5 figure

    Spin solitons in magnetized pair plasmas

    Full text link
    A set of fluid equations, taking into account the spin properties of the electrons and positrons in a magnetoplasma, are derived. The magnetohydrodynamic limit of the pair plasma is investigated. It is shown that the microscopic spin properties of the electrons and positrons can lead to interesting macroscopic and collective effects in strongly magnetized plasmas. In particular, it is found that new Alfvenic solitary structures, governed by a modified Korteweg-de Vries equation, are allowed in such plasmas. These solitary structures vanish if the quantum spin effects are neglected. Our results should be of relevance for astrophysical plasmas, e.g. in pulsar magnetospheres.Comment: 7 page

    Short wavelength quantum electrodynamical correction to cold plasma-wave propagation

    Full text link
    The effect of short wavelength quantum electrodynamic (QED) correction on plasma-wave propagation is investigated. The effect on plasma oscillations and on electromagnetic waves in an unmagnetized as well as a magnetized plasma is investigated. The effects of the short wavelength QED corrections are most significant for plasma oscillations and for extraordinary modes. In particular, the QED correction allow plasma oscillations to propagate, and the extra-ordinary mode looses its stop band. The significance of our results is discussed.Comment: 12 pages, 5 figure

    M87 black hole mass and spin estimate through the position of the jet boundary shape break

    Full text link
    We propose a new method of estimating a mass of a super massive black hole residing in the center of an active galaxy. The active galaxy M87 offers a convenient test case for the method due to the existence of a large amount of observational data on the jet and ambient environment properties in the central area of the object. We suggest that the observed transition of a jet boundary shape from a parabolic to a conical form is associated with the flow transiting from the magnetically dominated regime to the energy equipartition between plasma bulk motion and magnetic field. By coupling the unique set of observations available for the jet kinematics, environment and boundary profile with our MHD modelling under assumption on the presence of a dynamically important magnetic field in the M87 jet, we estimate the central black hole mass and spin. The method leads us to believe that the M87 super massive black hole has a mass somewhat larger than typically accepted so far.Comment: 10 pages, 1 figure, 3 tables, accepted for publication by MNRA
    • …
    corecore