153 research outputs found

    Galectin-1: Biphasic growth regulation of Leydig tumor cells

    Get PDF
    Galectin-1 (Gal-1) is a widely expressed β-galactoside-binding protein that exerts pleiotropic biological functions. To gain insight into the potential role of Gal-1 as a novel modulator of Leydig cells, we investigated its effect on the growth and death of MA-10 tumor Leydig cells. In this study, we identified cytoplasmic Gal-1 expression in these tumor cells by cytofluorometry. DNA fragmentation, caspase-3, -8, and -9 activation, loss of mitochondrial membrane potential (ΔΨ m), cytochrome c (Cyt c) release, and FasL expression suggested that relatively high concentrations of exogenously added recombinant Gal-1 (rGal-1) induced apoptosis by the mitochondrial and death receptor pathways. These pathways were independently activated, as the presence of the inhibitor of caspase-8 or -9 only partially prevented Gal-1-effect. On the contrary, low concentrations of Gal-1 significantly promoted cell proliferation, without inducing cell death. Importantly, the presence of the disaccharide lactose prevented Gal-1 effects, suggesting the involvement of the carbohydrate recognition domain (CRD). This study provides strong evidence that Gal-1 is a novel biphasic regulator of Leydig tumor cell number, suggesting a novel role for Gal-1 in the reproductive physiopathology. © Copyright 2006 Oxford University Press.Fil:Troncoso, M.F. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Patrignani, Z.J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Pignataro, O.P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina

    Amplified Sediment waves in the Irish Sea (AmSedIS)

    Get PDF
    Exceptionally high, straight-crested and trochoidal sediment waves have recently been observed on shelf seas world-wide, and reach heights of up to 36 m in the Irish Sea. It is uncertain how the interplay between geological, biogeochemical and hydrodynamic processes influences the migration and extreme growth of these sediment waves. The AmSedIS project thus sets out to (1) investigate the role of sediment granulometry and sedimentavailability on both “extreme” and “normal” sediment wave development and (2) investigate the potential association of methane derived carbonate formation with extreme sediment wave growth. The preliminary findings are: (1) The crests of unusually high and trochoidal sediment waves still migrate over several meters per year and they consist of coarser, more poorly sorted sediments in comparison to the "normal" sediments waves; (2) Methane seepage is not considered a factor in extreme sediment wave development; (3) The excess of mobile sediment supply seems to allow for "extreme" sediment wave growth, and is linked to palaeo-tunnel valleys and the finer sediments that fill them or with converging sediment transport pathways; (4) The variation in sediment from sediment wave trough to crest to trough will form the basis for more advanced numerical modelling

    Active flexible concentric ring electrode for non-invasive surface bioelectrical recordings

    Full text link
    Bioelectrical surface recordings are usually performed by unipolar or bipolar disc electrodes even though they entail the serious disadvantage of having poor spatial resolution. Concentric ring electrodes give improved spatial resolution, although this type of electrode has so far only been implemented in rigid substrates and as they are not adapted to the curvature of the recording surface may provide discomfort to the patient. Moreover, the signals recorded by these electrodes are usually lower in amplitude than conventional disc electrodes. The aim of this work was thus to develop and test a new modular active sensor made up of concentric ring electrodes printed on a flexible substrate by thick-film technology together with a reusable battery-powered signal-conditioning circuit. Simultaneous ECG recording with both flexible and rigid concentric ring electrodes was carried out on ten healthy volunteers at rest and in motion. The results show that flexible concentric ring electrodes not only present lower skin electrode contact impedance and lower baseline wander than rigid electrodes but are also less sensitive to interference and motion artefacts. We believe these electrodes, which allow bioelectric signals to be acquired non-invasively with better spatial resolution than conventional disc electrodes, to be a step forward in the development of new monitoring systems based on Laplacian potential recordings.This research was supported in part by the Ministerio de Ciencia y Tecnologia de Espana (TEC2010-16945) and by the Universitat Politecnica de Valencia (PAID 2009/10-2298). The proof-reading of this paper was funded by the Universitat Politecnica de Valencia, Spain.Prats Boluda, G.; Ye Lin, Y.; García Breijo, E.; Ibáñez Civera, FJ.; Garcia Casado, FJ. (2012). Active flexible concentric ring electrode for non-invasive surface bioelectrical recordings. Measurement Science and Technology. 23(12):1-10. https://doi.org/10.1088/0957-0233/23/12/125703S1102312Malmivuo, J., & Plonsey, R. (1995). BioelectromagnetismPrinciples and Applications of Bioelectric and Biomagnetic Fields. doi:10.1093/acprof:oso/9780195058239.001.0001Gevins, A. (1989). Dynamic functional topography of cognitive tasks. Brain Topography, 2(1-2), 37-56. doi:10.1007/bf01128842Bradshaw, L. A., Wijesinghe, R. S., & Wikswo, Jr., J. P. (2001). Spatial Filter Approach for Comparison of the Forward and Inverse Problems of Electroencephalography and Magnetoencephalography. Annals of Biomedical Engineering, 29(3), 214-226. doi:10.1114/1.1352641Bradshaw, L. A., Richards, W. O., & Wikswo, J. P. (2001). Volume conductor effects on the spatial resolution of magnetic fields and electric potentials from gastrointestinal electrical activity. Medical & Biological Engineering & Computing, 39(1), 35-43. doi:10.1007/bf02345264Garcia-Casado, J., Martinez-de-Juan, J. L., & Ponce, J. L. (2005). Noninvasive Measurement and Analysis of Intestinal Myoelectrical Activity Using Surface Electrodes. IEEE Transactions on Biomedical Engineering, 52(6), 983-991. doi:10.1109/tbme.2005.846730SippensGroenewegen, A., Peeters, H. A. P., Jessurun, E. R., Linnenbank, A. C., Robles de Medina, E. O., Lesh, M. D., & van Hemel, N. M. (1998). Body Surface Mapping During Pacing at Multiple Sites in the Human Atrium. Circulation, 97(4), 369-380. doi:10.1161/01.cir.97.4.369Lian, J., Li, G., Cheng, J., Avitall, B., & He, B. (2002). Body surface Laplacian mapping of atrial depolarization in healthy human subjects. Medical & Biological Engineering & Computing, 40(6), 650-659. doi:10.1007/bf02345304Wu, D., Tsai, H. C., & He, B. (1999). On the Estimation of the Laplacian Electrocardiogram during Ventricular Activation. Annals of Biomedical Engineering, 27(6), 731-745. doi:10.1114/1.224Koka, K., & Besio, W. G. (2007). Improvement of spatial selectivity and decrease of mutual information of tri-polar concentric ring electrodes. Journal of Neuroscience Methods, 165(2), 216-222. doi:10.1016/j.jneumeth.2007.06.007Prats-Boluda, G., Garcia-Casado, J., Martinez-de-Juan, J. L., & Ye-Lin, Y. (2011). Active concentric ring electrode for non-invasive detection of intestinal myoelectric signals. Medical Engineering & Physics, 33(4), 446-455. doi:10.1016/j.medengphy.2010.11.009He, B., & Cohen, R. J. (1992). Body surface Laplacian mapping of cardiac electrical activity. The American Journal of Cardiology, 70(20), 1617-1620. doi:10.1016/0002-9149(92)90471-aBesio, W., Aakula, R., Koka, K., & Dai, W. (2006). Development of a Tri-polar Concentric Ring Electrode for Acquiring Accurate Laplacian Body Surface Potentials. Annals of Biomedical Engineering, 34(3), 426-435. doi:10.1007/s10439-005-9054-8Ye-Lin, Y., Garcia-Casado, J., Prats-Boluda, G., Ponce, J. L., & Martinez-de-Juan, J. L. (2009). Enhancement of the non-invasive electroenterogram to identify intestinal pacemaker activity. Physiological Measurement, 30(9), 885-902. doi:10.1088/0967-3334/30/9/002Hjorth, B. (1975). An on-line transformation of EEG scalp potentials into orthogonal source derivations. Electroencephalography and Clinical Neurophysiology, 39(5), 526-530. doi:10.1016/0013-4694(75)90056-5Perrin, F., Pernier, J., Bertnard, O., Giard, M. ., & Echallier, J. . (1987). Mapping of scalp potentials by surface spline interpolation. Electroencephalography and Clinical Neurophysiology, 66(1), 75-81. doi:10.1016/0013-4694(87)90141-6Nunez, P. L., & Westdorp, A. F. (1994). The surface laplacian, high resolution EEG and controversies. Brain Topography, 6(3), 221-226. doi:10.1007/bf01187712Srinivasan, R., Nunez, P. L., Tucker, D. M., Silberstein, R. B., & Cadusch, P. J. (1996). Spatial sampling and filtering of EEG with spline Laplacians to estimate cortical potentials. Brain Topography, 8(4), 355-366. doi:10.1007/bf01186911Farina, D., & Cescon, C. (2001). Concentric-ring electrode systems for noninvasive detection of single motor unit activity. IEEE Transactions on Biomedical Engineering, 48(11), 1326-1334. doi:10.1109/10.959328G. Besio, C. C. Lu, P. P. Tarjan, W. (2001). A Feasibility Study for Body Surface Cardiac Propagation Maps of Humans from Laplacian Moments of Activation. Electromagnetics, 21(7-8), 621-632. doi:10.1080/027263401752246243Li, G., Wang, Y., Lin, L., Jiang, W., Wang, L. L., Lu, S. C.-Y., & Besio, W. G. (2005). Active Laplacian electrode for the data-acquisition system of EHG. Journal of Physics: Conference Series, 13, 330-335. doi:10.1088/1742-6596/13/1/077Engel, J., Chen, J., & Liu, C. (2003). Development of polyimide flexible tactile sensor skin. Journal of Micromechanics and Microengineering, 13(3), 359-366. doi:10.1088/0960-1317/13/3/302Papakostas, T. V., Lima, J., & Lowe, M. (s. f.). A large area force sensor for smart skin applications. Proceedings of IEEE Sensors. doi:10.1109/icsens.2002.1037366Stieglitz, T. (2001). Flexible biomedical microdevices with double-sided electrode arrangements for neural applications. Sensors and Actuators A: Physical, 90(3), 203-211. doi:10.1016/s0924-4247(01)00520-9Hamilton, P. S., & Tompkins, W. J. (1986). Quantitative Investigation of QRS Detection Rules Using the MIT/BIH Arrhythmia Database. IEEE Transactions on Biomedical Engineering, BME-33(12), 1157-1165. doi:10.1109/tbme.1986.325695Besio, W., & Chen, T. (2007). Tripolar Laplacian electrocardiogram and moment of activation isochronal mapping. Physiological Measurement, 28(5), 515-529. doi:10.1088/0967-3334/28/5/006Besio, G., Koka, K., Aakula, R., & Weizhong Dai. (2006). Tri-polar concentric ring electrode development for Laplacian electroencephalography. IEEE Transactions on Biomedical Engineering, 53(5), 926-933. doi:10.1109/tbme.2005.863887Setti, L., Fraleoni-Morgera, A., Ballarin, B., Filippini, A., Frascaro, D., & Piana, C. (2005). An amperometric glucose biosensor prototype fabricated by thermal inkjet printing. Biosensors and Bioelectronics, 20(10), 2019-2026. doi:10.1016/j.bios.2004.09.022Reddy, A. S. G., Narakathu, B. B., Atashbar, M. Z., Rebros, M., Rebrosova, E., & Joyce, M. K. (2011). Gravure Printed Electrochemical Biosensor. Procedia Engineering, 25, 956-959. doi:10.1016/j.proeng.2011.12.235Gruetzmann, A., Hansen, S., & Müller, J. (2007). Novel dry electrodes for ECG monitoring. Physiological Measurement, 28(11), 1375-1390. doi:10.1088/0967-3334/28/11/005LI, G., LIAN, J., SALLA, P., CHENG, J., RAMACHANDRA, I., SHAH, P., … HE, B. (2003). Body Surface Laplacian Electrocardiogram of Ventricular Depolarization in Normal Human Subjects. Journal of Cardiovascular Electrophysiology, 14(1), 16-27. doi:10.1046/j.1540-8167.2003.02199.

    Sindbad: A new operational service for a safer leisure and boating navigation

    Get PDF
    The SINDBAD- Leisure and Boating Safety Navigation - project goal is the development of an advanced operational service to support navigation in a specific area. The first prototype covers the Ligurian Sea (a very busy touristic area in the North Mediterranean Sea) It develops an ICT Service Infrastructure to provide innovative intelligent automation functions and to develop customized services, accessible by your mobile device, for conducting a boat and avoiding any kind of risk ensuring the best degree of comfort

    Wave overtopping at near-vertical seawalls: Influence of foreshore evolution during storms

    Get PDF
    This work presents the results of an investigation on how wave overtopping at a near-vertical seawall at the back of a sandy foreshore is influenced by sequences of erosive storms. The experiments were carried out in the Large Wave Flume (GWK) at Leibniz University, Hannover (Germany). The tested layout consisted of a near-vertical 10/1 seawall and a sandy foreshore with an initial 1/15 slope. Three sequences of idealised erosive storms were simulated. Within each storm both the incident wave conditions and still water level were varied in time to represent high and low tide conditions. Each sequence started from a 1/15 configuration and the beach was not restored in between storms. The measurements included waves, beach profile, wave overtopping volumes. The profile of the beach was measured after each sea state tested. Wave overtopping at each stage of the tested storms was significantly influenced by bed changes. This was linked to the measured evolution of the beach. Measurements showed that a barred profile developed quickly at the start of each sequence, and scour developed at the toe of the structure during high water level conditions, while accretion or partial backfilling developed during low water level conditions. Due to these processes, the position of a sea state in the tested sequence is shown to be an important factor in determining the wave overtopping volume. Remarkably, when a weaker idealised storm followed a more energetic one, nearly the same level of overtopping was recorded. This is explained by the foreshore erosion, leading to increased water depths and wave heights at the toe of the structure. This finding allows to quantify and to explain the variability of wave overtopping in storms following one another at intervals shorter than the recovery time of the foreshore

    Tidal asymmetry and residual circulation over linear sandbanks and their implication on sediment transport : a process-oriented numerical study

    Get PDF
    Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 112 (2007): C12015, doi:10.1029/2007JC004101.A series of process-oriented numerical simulations is carried out in order to evaluate the relative role of locally generated residual flow and overtides on net sediment transport over linear sandbanks. The idealized bathymetry and forcing are similar to those present in the Norfolk Sandbanks, North Sea. The importance of bottom drag parameterization and bank orientation with respect to the ambient flow is examined in terms of residual flow and overtide generation, and subsequent sediment transport implications are discussed. The results show that although the magnitudes of residual flow and overtides are sensitive to bottom roughness parameterization and bank orientation, the magnitude of the generated residual flow is always larger than that of the locally generated overtides. Also, net sediment transport is always dominated by the nonlinear interaction of the residual flow and the semidiurnal tidal currents, although cross-bank sediment transport can occur even in the absence of a cross-shore residual flow. On the other hand, net sediment divergence/convergence increases as the bottom drag decreases and as bank orientation increases. The sediment erosion/deposition is not symmetric about the crest of the bank, suggesting that originally symmetric banks would have the tendency to become asymmetric.Funding for this work was provided by the U.S. Geological Survey as part of the SC Coastal Erosion Study and by the South Carolina Sea Grant Consortium (grant V169). Additional support for one of the authors (G. Voulgaris) was provided by the Office of Naval Research (Southeast Coastal Ocean Observing Systems) and by the National Science Foundation (award OCE-0451989)

    Comparison of electrohysterogram signal measured by surface electrodes with different designs: A computational study with dipole band and abdomen models

    Get PDF
    Non-invasive measurement of uterine activity using electrohysterogram (EHG) surface electrodes has been attempted to monitor uterine contraction. This study aimed to computationally compare the performance of acquiring EHG signals using monopolar electrode and three types of Laplacian concentric ring electrodes (bipolar, quasi-bipolar and tri-polar). With the implementation of dipole band model and abdomen model, the performances of four electrodes in terms of the local sensitivity were quantifed by potential attenuation. Furthermore, the efects of fat and muscle thickness on potential attenuation were evaluated using the bipolar and tri-polar electrodes with diferent radius. The results showed that all the four types of electrodes detected the simulated EHG signals with consistency. That the bipolar and tri-polar electrodes had greater attenuations than the others, and the shorter distance between the origin and location of dipole band at 20dB attenuation, indicating that they had relatively better local sensitivity. In addition, ANOVA analysis showed that, for all the electrodes with diferent outer ring radius, the efects of fat and muscle on potential attenuation were signifcant (all p<0.01). It is therefore concluded that the bipolar and tri-polar electrodes had higher local sensitivity than the others, indicating that they can be applied to detect EHG efectively

    Use of expert elicitation to assign weights to climate and hydrological models in climate impact studies

    Get PDF
    Various methods are available for assessing uncertainties in climate impact studies. Among such methods, model weighting by expert elicitation is a practical way to provide a weighted ensemble of models for specific real-world impacts. The aim is to decrease the influence of improbable models in the results and easing the decision-making process. In this study both climate and hydrological models are analysed, and the result of a research experiment is presented using model weighting with the participation of six climate model experts and six hydrological model experts. For the experiment, seven climate models are a priori selected from a larger EURO-CORDEX (Coordinated Regional Downscaling Experiment - European Domain) ensemble of climate models, and three different hydrological models are chosen for each of the three European river basins. The model weighting is based on qualitative evaluation by the experts for each of the selected models based on a training material that describes the overall model structure and literature about climate models and the performance of hydrological models for the present period. The expert elicitation process follows a three-stage approach, with two individual rounds of elicitation of probabilities and a final group consensus, where the experts are separated into two different community groups: a climate and a hydrological modeller group. The dialogue reveals that under the conditions of the study, most climate modellers prefer the equal weighting of ensemble members, whereas hydrological-impact modellers in general are more open for assigning weights to different models in a multi-model ensemble, based on model performance and model structure. Climate experts are more open to exclude models, if obviously flawed, than to put weights on selected models in a relatively small ensemble. The study shows that expert elicitation can be an efficient way to assign weights to different hydrological models and thereby reduce the uncertainty in climate impact. However, for the climate model ensemble, comprising seven models, the elicitation in the format of this study could only re-establish a uniform weight between climate models

    The scavenging chemokine receptor ACKR2 has a significant impact on acute mortality rate and early lesion development after traumatic brain injury

    Get PDF
    The atypical chemokine receptor ACKR2 promotes resolution of acute inflammation by operating as a scavenger receptor for inflammatory CC chemokines in several experimental models of inflammatory disorders, however its role in the brain remains unclear. Based on our previous reports of increased expression of inflammatory chemokines and their corresponding receptors following traumatic brain injury (TBI), we hypothesised that ACKR2 modulates neuroinflammation following brain trauma and that its deletion exacerbates cellular inflammation and chemokine production. We demonstrate increased CCL2 and ACKR2 mRNA expression in post-mortem human brain, whereby ACKR2 mRNA levels correlated with later times post-TBI. This data is consistent with the transient upregulation of ACKR2 observed in mouse brain after closed head injury (CHI). As compared to WT animals, ACKR2-/- mice showed a higher mortality rate after CHI, while the neurological outcome in surviving mice was similar. At day 1 post-injury, ACKR2-/- mice displayed aggravated lesion volume and no differences in CCL2 expression and macrophage recruitment relative to WT mice. Reciprocal regulation of ACKR2 and CCL2 expression was explored in cultured astrocytes, which are recognized as the major source of CCL2 and also express ACKR2. ACKR2 mRNA increased as early as 2 hours after an inflammatory challenge in WT astrocytes. As expected, CCL2 expression also dramatically increased at 4 hours in WT astrocytes but was significantly lower in ACKR2-/- astrocytes, possibly indicating a co-regulation of CCL2 and ACKR2 in these cells. Conversely, in vivo, CCL2 mRNA/protein levels were increased similarly in ACKR2-/- and WT brains at 4 and 12 hours after CHI, in line with the lack of differences in cerebral macrophage recruitment and neurological recovery. In conclusion, ACKR2 is induced after TBI and has a significant impact on mortality and lesion development acutely following CHI, while its role in chemokine expression, macrophage activation, brain pathology, and neurological recovery at later time-points is minor. Concordant to evidence in multiple sclerosis experimental models, our data corroborate a distinct role for ACKR2 in cerebral inflammatory processes compared to its reported functions in peripheral tissues
    • …
    corecore