86 research outputs found
Early recovery of microvascular perfusion induced by t-PA in combination with abciximab or eptifibatide during postischemic reperfusion
BACKGROUND: GPIIb/IIIa inhibitors abciximab and eptifibatide have been shown to inhibit platelet aggregation in ischemic heart disease. Our aim was to test the efficacy of abiciximab (Reo Pro) or eptifibatide (Integrilin) alone or in combination with plasminogen activator (t-PA) in an experimental model of ischemia reperfusion (I/R) in hamster cheek pouch microcirculation visualized by fluorescence microscopy. Hamsters were treated with saline, or abiciximab or eptifibatide or these drugs combined with t-PA infused intravenously 10 minutes before ischemia and through reperfusion. We measured the microvessel diameter changes, the arteriolar red blood cell (RBC) velocity, the increase in permeability, the perfused capillary length (PCL), and the platelet and leukocyte adhesion on microvessels. RESULTS: I/R elicited large increases in the platelet and leukocyte adhesion and a decrease in microvascular perfusion. These responses were significantly attenuated by abiciximab or eptifibatide (PCL:70 and 65% at 5–10 mins of reperfusion and 85 and 87% at 30 mins of reperfusion, respectively, p < 0.001) while t-PA combined with abiciximab or eptifibatide, was more effective and microvascular perfusion recovered immediately after postischemic reperfusion. CONCLUSIONS: Platelets are crucial in I/R injury, as shown by the treatment with abicixmab or eptifibatide, which decreased platelet aggregation in microvessels, and also decreased leukocyte adhesion in venules. Arterial vasoconstriction, decreased arterial RBC velocity and alterations in the endothelial barrier with increased permeability delayed the complete restoration of blood flow, while t-PA combined with inhibition of platelet aggregation speeded up the capillary perfusion after reperfusion
Identification of surgically-induced longitudinal lesions of the equine deep digital flexor tendon in the digital flexor tendon sheath using contrast-enhanced ultrasonography: an ex-vivo pilot study
BACKGROUND: Longitudinal tears in the lateral aspect of the deep digital flexor tendon are the most common causes of pain localised to the equine digital flexor tendon sheath. However conventional ultrasonographic techniques provide limited information about acute lesions. Ultrasonographic contrast agents are newly developed materials that have contributed to advancement in human diagnostic imaging. They are currently approved for intravenous use in human and animal models. In this study we described intrathecal use in the horse. This study was undertaken to evaluate the reliability of standard and angle contrast-enhanced ultrasonography to detect and characterize surgically-induced longitudinal lesions in the deep digital flexor tendons. In this pilot study surgically-induced lesions were created in the lateral aspect of the deep digital flexor tendon within the digital flexor tendon sheath in 10 isolated equine limbs to generate a replicable model for naturally occurring lesions. Another 10 specimens were sham operated. All the limbs were examined ultrasonographically before and shortly after the intrasynovial injection of an ultrasound contrast agent containing stabilised microbubbles. The images were blindly evaluated to detect the ability to identify surgically-created lesions. The deep digital flexor tendons were dissected and a series of slices were obtained. The depth of longitudinal defects identified with contrast-enhanced ultrasound scans was compared to the real extent of the lesions measured in the corresponding gross tendon sections. RESULTS: Contrast-enhanced ultrasonography with both angle and standard approach provided a significant higher proportion of correct diagnoses compared to standard and angle contrast ultrasonography (p < 0.01). Contrast-enhanced ultrasonography reliably estimated the depth of surgically-induced longitudinal lesions in the deep digital flexor tendons. CONCLUSION: Contrast-enhanced ultrasound of the digital flexor tendon sheath could be an effective tool to detect intrasynovial longitudinal tears of the deep digital flexor tendon, although an in vivo study is required to confirm these results for naturally occurring lesions
Epidemiology of musculoskeletal injuries in a population of harness Standardbred racehorses in training
BACKGROUND: There is a substantial paucity of studies concerning musculoskeletal injuries in harness Standardbred racehorses. Specifically, little is known about the epidemiology of exercise-related musculoskeletal injuries. Most studies on this subject involve Thoroughbred racehorses, whose biomechanics and racing speed differ from Standardbred, making comparisons difficult. Here, a population of Standardbred racehorses trained at the same racecourse was studied over four years and a classification system for exercise-related musculoskeletal injuries was designed. The incidence rates of musculoskeletal injuries causing horses’ withdrawal from training for 15 days or longer were investigated. A mixed-effects Poisson regression model was used to estimate musculoskeletal injury rates and to describe significance of selected risk factors for exercise-related injuries in this population. RESULTS: A total of 356 trotter racehorses from 10 different stables contributed 8961 months at risk of musculoskeletal injuries. Four-hundred-and-twenty-nine injuries were reported and classified into 16 categories, based on their aetiology and anatomical localisation. The overall exercise-related injury rate was 4.79 per 100 horse months. When considering risk factors one by one in separate univariable analyses, we obtained the following results: rates did not differ significantly between genders and classes of age, whereas one driver seemed to cause fewer injuries than the others. Racing speed and racing intensity, as well as recent medical history, seemed to be significant risk factors (p < 0.001), while being shod or unshod during racing was not. On the other hand, when pooling several risk factors in a multivariable approach, only racing intensity turned out to be significant (p < 0.001), since racing speed and the racing intensity were partially confounded, being strongly correlated to one another. CONCLUSION: Characterizing epidemiology of exercise-related musculoskeletal injuries in trotter racehorses provides baseline incidence rate values. Incidence rates of stress fracture are lower in Standardbreds compared to Thoroughbreds, whereas the opposite is true for tendon and suspensory ligament injuries. In addition to identification of risk factors for musculoskeletal injuries among Standardbred racehorses, results suggest that racing intensity seems to be a protective predictor of risk and recent medical history could be used to identify horses at risk of injury
- …