188 research outputs found

    Antimatter, Lorentz Symmetry, and Gravity

    Full text link
    A brief introduction to the Standard-Model Extension (SME) approach to testing CPT and Lorentz symmetry is provided. Recent proposals for tests with antimatter are summarized, including gravitational and spectroscopic tests.Comment: Presented at the 12th International Conference on Low Energy Antiproton Physics, Kanazawa Japan, March 6-11, 2016, Accepted for publication in JPS Conference Proceeding

    Evidence for universal structure in galactic halos

    Get PDF
    The late infall of dark matter onto a galaxy produces structure (such as caustics) in the distribution of dark matter in the halo. We argue that such structure is likely to occur generically on length scales proportional to lt0vrotl \sim t_0 v_{rot}, where t0t_0 is the age of the universe and vrotv_{rot} is the rotation velocity of the galaxy. A set of 32 extended galactic rotation curves is analyzed. For each curve, the radial coordinate is rescaled according to rr~r(v0/vrot)r\to \tilde r \equiv r (v_0 / v_{rot}), where we choose v0=220km/sv_0 = 220 km/s. A linear fit to each rescaled rotation curve is subtracted, and the residuals are binned and averaged. The sample shows significant features near r~=40kpc\tilde r = 40 kpc and r~=20kpc\tilde r = 20 kpc. This is consistent with the predictions of the self-similar caustic ring model of galactic halos.Comment: 4 pages, LaTeX, 1 epsf figur

    Improving the Lagrangian perturbative solution for cosmic fluid: Applying Shanks transformation

    Get PDF
    We study the behavior of Lagrangian perturbative solutions. For a spherical void model, the higher order the Lagrangian perturbation we consider, the worse the approximation becomes in late-time evolution. In particular, if we stop to improve until an even order is reached, the perturbative solution describes the contraction of the void. To solve this problem, we consider improving the perturbative solution using Shanks transformation, which accelerates the convergence of the sequence. After the transformation, we find that the accuracy of higher-order perturbation is recovered and the perturbative solution is refined well. Then we show that this improvement method can apply for a Λ\LambdaCDM model and improved the power spectrum of the density field.Comment: 17 pages, 7 figures; accepted for publication in Phys.Rev.D; v2: Evolution of power spectrum in LCDM model is added; v3: References are correcte

    The cloud-in-cloud problem for non-Gaussian density fields

    Get PDF
    The cloud-in-cloud problem is studied in the context of the extension to non-Gaussian density fields of the Press-Schechter approach for the calculation of the mass function. As an example of a non-Gaussian probability distribution functions (PDFs) we consider the Chi-square, with various degrees of freedom. We generate density fields in cubic boxes with periodic boundary conditions and then determine the number of points considered collapsed at each scale through an hierarchy of smoothing windows. We find that the mass function we obtain differs from that predicted using the Extended Press-Schechter formalism, particularly for low values of σ\sigma and for those PDFs most distinct from a Gaussian.Comment: 5 pages, LaTex using mn.sty, matches published version, results for the Inverted Chi-square distribution withdraw

    Local information transfer as a spatiotemporal filter for complex systems

    Full text link
    We present a measure of local information transfer, derived from an existing averaged information-theoretical measure, namely transfer entropy. Local transfer entropy is used to produce profiles of the information transfer into each spatiotemporal point in a complex system. These spatiotemporal profiles are useful not only as an analytical tool, but also allow explicit investigation of different parameter settings and forms of the transfer entropy metric itself. As an example, local transfer entropy is applied to cellular automata, where it is demonstrated to be a novel method of filtering for coherent structure. More importantly, local transfer entropy provides the first quantitative evidence for the long-held conjecture that the emergent traveling coherent structures known as particles (both gliders and domain walls, which have analogues in many physical processes) are the dominant information transfer agents in cellular automata.Comment: 12 page

    A new approach to cosmological perturbations in f(R) models

    Full text link
    We propose an analytic procedure that allows to determine quantitatively the deviation in the behavior of cosmological perturbations between a given f(R) modified gravity model and a LCDM reference model. Our method allows to study structure formation in these models from the largest scales, of the order of the Hubble horizon, down to scales deeply inside the Hubble radius, without employing the so-called "quasi-static" approximation. Although we restrict our analysis here to linear perturbations, our technique is completely general and can be extended to any perturbative order.Comment: 21 pages, 2 figures; Revised version according to reviewer's suggestions; Typos corrected; Added Reference

    DEFROST: A New Code for Simulating Preheating after Inflation

    Full text link
    At the end of inflation, dynamical instability can rapidly deposit the energy of homogeneous cold inflaton into excitations of other fields. This process, known as preheating, is rather violent, inhomogeneous and non-linear, and has to be studied numerically. This paper presents a new code for simulating scalar field dynamics in expanding universe written for that purpose. Compared to available alternatives, it significantly improves both the speed and the accuracy of calculations, and is fully instrumented for 3D visualization. We reproduce previously published results on preheating in simple chaotic inflation models, and further investigate non-linear dynamics of the inflaton decay. Surprisingly, we find that the fields do not want to thermalize quite the way one would think. Instead of directly reaching equilibrium, the evolution appears to be stuck in a rather simple but quite inhomogeneous state. In particular, one-point distribution function of total energy density appears to be universal among various two-field preheating models, and is exceedingly well described by a lognormal distribution. It is tempting to attribute this state to scalar field turbulence.Comment: RevTeX 4.0; 16 pages, 9 figure

    Accelerating Universe and Cosmological Perturbation in the Ghost Condensate

    Get PDF
    In the simplest Higgs phase of gravity called ghost condensation, an accelerating universe with a phantom era (w<-1) can be realized without ghost or any other instabilities. In this paper we show how to reconstruct the potential in the Higgs sector Lagrangian from a given cosmological history (H(t), \rho(t)). This in principle allows us to constrain the potential by geometrical information of the universe such as supernova distance-redshift relation. We also derive the evolution equation for cosmological perturbations in the Higgs phase of gravity by employing a systematic low energy expansion. This formalism is expected to be useful to test the theory by dynamical information of large scale structure in the universe such as cosmic microwave background anisotropy, weak gravitational lensing and galaxy clustering.Comment: 30 pages; typos corrected; version accepted for publication in JCA

    Gravitational field around a screwed superconducting cosmic string in scalar-tensor theories

    Get PDF
    We obtain the solution that corresponds to a screwed superconducting cosmic string (SSCS) in the framework of a general scalar-tensor theory including torsion. We investigate the metric of the SSCS in Brans-Dicke theory with torsion and analyze the case without torsion. We show that in the case with torsion the space-time background presents other properties different from that in which torsion is absent. When the spin vanish, this torsion is a ϕ\phi-gradient and then it propagates outside of the string. We investigate the effect of torsion on the gravitational force and on the geodesics of a test-particle moving around the SSCS. The accretion of matter by wakes formation when a SSCS moves with speed vv is investigated. We compare our results with those obtained for cosmic strings in the framework of scalar-tensor theory.Comment: 22 pages, LaTeX, presented at the "XXII - Encontro Nacional de Fisica de Particulas e Campos", Sao Lourenco, MG, Brazi

    Density pertubation of unparticle dark matter in the flat Universe

    Full text link
    The unparticle has been suggested as a candidate of dark matter. We investigated the growth rate of the density perturbation for the unparticle dark matter in the flat Universe. First, we consider the model in which unparticle is the sole dark matter and find that the growth factor can be approximated well by f=(1+3ωu)Ωuγf=(1+3\omega_u)\Omega^{\gamma}_u, where ωu\omega_u is the equation of state of unparticle. Our results show that the presence of ωu\omega_u modifies the behavior of the growth factor ff. For the second model where unparticle co-exists with cold dark matter, the growth factor has a new approximation f=(1+3ωu)Ωuγ+αΩmf=(1+3\omega_u)\Omega^{\gamma}_u+\alpha \Omega_m and α\alpha is a function of ωu\omega_u. Thus the growth factor of unparticle is quite different from that of usual dark matter. These information can help us know more about unparticle and the early evolution of the Universe.Comment: 6pages, 4 figures, accepted for publication in Eur. Phys. J.
    corecore