85 research outputs found

    Regulations concerning agriculture and air pollution

    Get PDF
    The main issues related to the atmospheric pollution are the stratospheric ozone depletion, the transboundary air pollution, the troposphere air quality and the climate change. The three last decades have seen the birth of several measures for the atmosphere safeguard. Agricultural activities play a key role in determining, preventing and mitigating atmospheric pollution. The emission to atmosphere of different ozone-depleting substances is regulated by the Montreal Protocol. The role of agriculture activity in ozone depletion is linked to the utilization of methyl bromide as soil sterilant and to the emission of nitrogen oxides and nitrous oxide, from agricultural soils. The Convention on long-range transboundary air pollution regulates the emission of several pollutants, i.e. sulphur dioxide, nitrogen oxides, ammonia, non methane volatile organic compounds, carbon monoxide, heavy metals, persistent organic pollutants, and tropospheric ozone. The agriculture sector is responsible for a large part of the emissions of ammonia and nitrogen oxides, mainly through manure management and nitrogen fertilization, and of most persistent organic pollutants, largely used in the past as insecticides and fungicides. The increase of the greenhouse gases (GHGs) concentration in the atmosphere is under the control of the Kyoto Protocol. Agriculture accounts for 59-63% of global non-CO2 GHGs emissions but at the same time it contributes to the atmospheric CO2 concentration stabilisation through the substitution of fossil fuels by biofuels and the sequestration of C in soil and vegetal biomass. In this paper we provide an outline of the numerous scientific and legislative initiatives aimed at protecting the atmosphere, and we analyse in detail the agriculture sector in order to highlight both its contribution to atmospheric pollution and the actions aimed at preventing and mitigating it

    Agronomic benefits and detriments of using biochar

    Get PDF
    The use of biochar, a secondary product of pyrolysis after syngas and bio-oil production for bioenergy, is promoted for agricultural purposes. Its potential for C sequestration and greenhouse gas emission reduction can help for mitigating climate change and potential adverse impacts to ecosystems. Additionally, it represents an alternative means for containing water and atmospheric pollution ascribed to large volumes of crop and animal wastes. As a soil amendment, biochar has received increased interest due to its role in enhancing nutrient- and water-use efficiencies. Please click on the file below for full content of the abstract

    Crop response to soils amended with biochar: Expected benefits and unintended risks

    Get PDF
    Biochar (BC) from biomass waste pyrolysis has been widely studied due to its ability to increase carbon sequestration, reduce greenhouse gas emissions, and enhance both crop growth and soil quality. This review summarises the current knowledge of BC production, characterisation, and types, with a focus on its positive effects on crop yield and soil properties vs the unintended risks associated with these effects. Biochar-amended soils enhance crop growth and yield via several mechanisms: expanded plant nutrient and water availability through increased use efficiencies, improved soil quality, and suppression of soil and plant diseases. Yield response to BC has been shown to be more evident in acidic and sandy soils than in alkaline and fine-textured soils. Biochar composition and properties vary considerably with feedstock and pyrolysis conditions so much that its concentrations of toxic compounds and heavy metals can negatively impact crop and soil health. Consequently, more small-scale and greenhouse-sited studies are in process to investigate the role of BC/soil/crop types on crop growth, and the mechanisms by which they influence crop yield. Similarly, a need exists for long-term, field-scale studies on the effects (beneficial and harmful) of BC amendment on soil health and crop yields, so that production guidelines and quality standards may be developed for BCs derived from a range of feedstocks
    corecore