219 research outputs found

    Solid variant of aneurysmal bone cyst of the heel: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>An aneurysmal bone cyst is a benign but often rapidly expanding osteolytic multi-cystic osseous lesion that occurs as a primary, secondary, intra-osseous, extra-osseous, solid or conventional lesion. It frequently coexists with other benign and malignant bone tumors. Although it is considered to be reactive in nature, there is evidence that some aneurysmal bone cysts are true neoplasms. The solid variant of aneurysmal bone cyst is a rare subtype of aneurysmal bone cyst with a preponderance of solid to cystic elements. Such a case affecting the heel, an unusual site, is reported.</p> <p>Case presentation</p> <p>A 26-year-old Caucasian man presented with pain and swelling in his left lower extremity. A plain radiograph demonstrated an intra-osseous, solitary, eccentric mass in the front portion of the left heel. Computed tomography and magnetic resonance imaging scans showed that the lesion appeared to be sub-cortical, solid with a small cystic portion without the characteristic fluid-fluid level detection but with distinct internal septation. Bone images containing fluid-fluid levels are usually produced by aneurysmal bone cysts. The fluid-fluid level due to bleeding within the tumor followed by layering of the blood components based density differences, but it was not seen in our case. An intra-lesional excision was performed. Microscopic examination revealed fibrous septa with spindle cell fibroblastic proliferation, capillaries and extensive areas of mature osteoid and reactive woven bone formation rimmed by osteoblasts. The spindle cells had low mitotic activity, and atypical forms were absent. The histological features of the lesion were consistent with the solid variant of an aneurysmal bone cyst.</p> <p>Conclusion</p> <p>Solid aneurysmal bone cysts have been of great interest to pathologists because they may be mistaken for malignant tumors, mainly in cases of giant cell tumors or osteosarcomas, because of cellularity and variable mitotic activity. It is rather obvious that the correlation of clinical, radiological and histological findings is necessary for the differential diagnosis. The eventual diagnosis is based on microscopic evidence and is made when a predominance of solid to cystic elements is found. The present case is of great interest because of the nature of the neoplasm and the extremely unusual location in which it developed. Pathologists must be alert for such a diagnosis.</p

    Secure Key Encapsulation Mechanism with Compact Ciphertext and Public Key from Generalized Srivastava code

    Get PDF
    Code-based public key cryptosystems have been found to be an interesting option in the area of Post-Quantum Cryptography. In this work, we present a key encapsulation mechanism (KEM) using a parity check matrix of the Generalized Srivastava code as the public key matrix. Generalized Srivastava codes are privileged with the decoding technique of Alternant codes as they belong to the family of Alternant codes. We exploit the dyadic structure of the parity check matrix to reduce the storage of the public key. Our encapsulation leads to a shorter ciphertext as compared to DAGS proposed by Banegas et al. in Journal of Mathematical Cryptology which also uses Generalized Srivastava code. Our KEM provides IND-CCA security in the random oracle model. Also, our scheme can be shown to achieve post-quantum security in the quantum random oracle model

    Giant cell tumor of the temporal bone – a case report

    Get PDF
    BACKGROUND: Giant cell tumor is a benign but locally aggressive bone neoplasm which uncommonly involves the skull. The petrous portion of the temporal bone forms a rare location for this tumor. CASE PRESENTATION: The authors report a case of a large giant cell tumor involving the petrous and squamous portions of the temporal bone in a 26 year old male patient. He presented with right side severe hearing loss and facial paresis. Radical excision of the tumor was achieved but facial palsy could not be avoided. CONCLUSION: Radical excision of skull base giant cell tumor may be hazardous but if achieved is the optimal treatment and may be curative

    Progression of duodenal adenomatosis in familial adenomatous polyposis: due to ageing of subjects and advances in technology

    Get PDF
    Familial adenomatous polyposis patients are at risk of duodenal cancer. Surveillance is indicated and the extent of duodenal polyposis is quantified by the Spigelman staging system. We noticed an impressive increase in high Spigelman stages over the years and therefore decided to investigate whether this increase might be due to the time-lapse since the inception of surveillance or related to improvements in endoscopic imaging and/or changes in dysplasia-reporting. Patients who were investigated by the same endoscopist since 1980 in at least 2 different episodes of technical improvements were eligible. The period 1980–2009 was divided into 4 episodes using the following landmarks: replacement of fibre-endoscopes by video-endoscopes in 1987, change in processors in 1995, change in image resolution in 2000, and change in dysplasia-reporting in 2006. An increase in Spigelman stages from low stages (0–II 100%) to high stages (III 28.1%, IV 43.8%) was seen (median follow-up: 19.5 years). In patients who progressed, a median of 4 years elapsed before progression by one stage occurred and 7 years to progress by two stages. In a mixed-model analysis, both time-lapse and technical improvements were determinant factors for duodenal disease progression. When both factors were introduced in the model, the time-lapse as well as the change in image resolution and dysplasia-ranking contributed consistently in increasing Spigelman scores and stages. The impressive increase in severity of duodenal polyposis is determined by time-lapse, technological advances and change in dysplasia-reporting. These results might call for a revised Spigelman classification

    Role of mitochondrial raft-like microdomains in the regulation of cell apoptosis

    Get PDF
    Lipid rafts are envisaged as lateral assemblies of specific lipids and proteins that dissociate and associate rapidly and form functional clusters in cell membranes. These structural platforms are not confined to the plasma membrane; indeed lipid microdomains are similarly formed at subcellular organelles, which include endoplasmic reticulum, Golgi and mitochondria, named raft-like microdomains. In addition, some components of raft-like microdomains are present within ER-mitochondria associated membranes. This review is focused on the role of mitochondrial raft-like microdomains in the regulation of cell apoptosis, since these microdomains may represent preferential sites where key reactions take place, regulating mitochondria hyperpolarization, fission-associated changes, megapore formation and release of apoptogenic factors. These structural platforms appear to modulate cytoplasmic pathways switching cell fate towards cell survival or death. Main insights on this issue derive from some pathological conditions in which alterations of microdomains structure or function can lead to severe alterations of cell activity and life span. In the light of the role played by raft-like microdomains to integrate apoptotic signals and in regulating mitochondrial dynamics, it is conceivable that these membrane structures may play a role in the mitochondrial alterations observed in some of the most common human neurodegenerative diseases, such as Amyotrophic lateral sclerosis, Huntington's chorea and prion-related diseases. These findings introduce an additional task for identifying new molecular target(s) of pharmacological agents in these pathologies

    Seafloor character and sedimentary processes in eastern Long Island Sound and western Block Island Sound

    Get PDF
    Author Posting. © The Author(s), 2006. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Geo-Marine Letters 26 (2006): 59-68, doi: 10.1007/s00367-006-0016-4.Multibeam bathymetric data and seismic-reflection profiles collected in eastern Long Island and western Block Island Sounds reveal previously unrecognized glacial features and modern bedforms. Glacial features include an ice-sculptured bedrock surface, a newly identified recessional moraine, exposed glaciolacustrine sediments, and remnants of stagnant-ice-contact deposits. Modern bedforms include fields of transverse sand waves, barchanoid waves, giant scour depressions, and pockmarks. Bedform asymmetry and scour around obstructions indicate that net sediment transport is westward across the northern par of the study area near Fishers Island and eastward across the southern par near Great Gull Island.This work was supported by the Coastal and Marine Geology Program of the U.S. Geological Survey, the Connecticut Department of Environmental Protection, and the Atlantic Hydrographic Branch of the National Oceanic and Atmospheric Administration

    Glaciotectonic deformation associated with the Orient Point–Fishers Island moraine, westernmost Block Island Sound : further evidence of readvance of the Laurentide ice sheet

    Get PDF
    This paper is not subject to U.S. copyright. The definitive version was published in Geo-Marine Letters 32 (2012): 279-288, doi:10.1007/s00367-012-0296-9.High-resolution seismic-reflection profiles collected across pro-glacial outwash deposits adjacent to the circa 18 ka b.p. Orient Point–Fishers Island end moraine segment in westernmost Block Island Sound reveal extensive deformation. A rhythmic seismic facies indicates the host outwash deposits are composed of fine-grained glaciolacustrine sediments. The deformation is variably brittle and ductile, but predominantly compressive in nature. Brittle deformation includes reverse faults and thrust faults that strike parallel to the moraine, and thrust sheets that extend from beneath the moraine. Ductile deformation includes folded sediments that overlie undisturbed deposits, showing that they are not drape features. Other seismic evidence for compression along the ice front consists of undisturbed glaciolacustrine strata that dip back toward and underneath the moraine, and angular unconformities on the sea floor where deformed sediments extend above the surrounding undisturbed correlative strata. Together, these ice-marginal glaciotectonic features indicate that the Orient Point–Fishers Island moraine marks a significant readvance of the Laurentide ice sheet, consistent with existing knowledge for neighboring coeval moraines, and not simply a stillstand as previously reported.This work was supported by the Connecticut Department of Environmental Protection, and the Atlantic Hydrographic Branch of the National Oceanic and Atmospheric Administration.2013-06-2

    Bromodomain and extra-terminal domain inhibition modulates the expression of pathologically relevant microRNAs in diffuse large B-cell lymphoma.

    Get PDF
    Aberrant changes in microRNA expression contribute to lymphomagenesis. Bromodomain and extra-terminal domain inhibitors such as OTX015 (MK-8628, birabresib) have demonstrated preclinical and clinical activity in hematologic tumors. MicroRNA profiling of diffuse large B-cell lymphoma cells treated with OTX015 revealed changes in the expression levels of a limited number of microRNAs, including miR-92a-1-5p, miR-21-3p, miR-155-5p and miR-96-5p. Analysis of publicly available chromatin immunoprecipitation sequencing data of diffuse large B-cell lymphoma cells treated with bromodomain and extra-terminal domain (BET) inhibitors showed that the BET family member BRD4 bound to the upstream regulatory regions of multiple microRNA genes and that this binding decreased following BET inhibition. Alignment of our microRNA profiling data with the BRD4 chromatin immunoprecipitation sequencing data revealed that microRNAs downregulated by OTX015 also exhibited reduced BRD4 binding in their promoter regions following treatment with another bromodomain and extra-terminal domain inhibitor, JQ1, indicating that BRD4 contributes directly to microRNA expression in lymphoma. Treatment with bromodomain and extra-terminal domain inhibitors also decreased the expression of the arginine methyltransferase PRMT5, which plays a crucial role in B-cell transformation and negatively modulates the transcription of miR-96-5p. The data presented here indicate that in addition to previously observed effects on the expression of coding genes, bromodomain and extra-terminal domain inhibitors also modulate the expression of microRNAs involved in lymphomagenesis

    Proteomic profiling of neuronal mitochondria reveals modulators of synaptic architecture

    Get PDF
    Abstract Background Neurons are highly polarized cells consisting of three distinct functional domains: the cell body (and associated dendrites), the axon and the synapse. Previously, it was believed that the clinical phenotypes of neurodegenerative diseases were caused by the loss of entire neurons, however it has recently become apparent that these neuronal sub-compartments can degenerate independently, with synapses being particularly vulnerable to a broad range of stimuli. Whilst the properties governing the differential degenerative mechanisms remain unknown, mitochondria consistently appear in the literature, suggesting these somewhat promiscuous organelles may play a role in affecting synaptic stability. Synaptic and non-synaptic mitochondrial subpools are known to have different enzymatic properties (first demonstrated by Lai et al., 1977). However, the molecular basis underpinning these alterations, and their effects on morphology, has not been well documented. Methods The current study has employed electron microscopy, label-free proteomics and in silico analyses to characterize the morphological and biochemical properties of discrete sub-populations of mitochondria. The physiological relevance of these findings was confirmed in-vivo using a molecular genetic approach at the Drosophila neuromuscular junction. Results Here, we demonstrate that mitochondria at the synaptic terminal are indeed morphologically different to non-synaptic mitochondria, in both rodents and human patients. Furthermore, generation of proteomic profiles reveals distinct molecular fingerprints – highlighting that the properties of complex I may represent an important specialisation of synaptic mitochondria. Evidence also suggests that at least 30% of the mitochondrial enzymatic activity differences previously reported can be accounted for by protein abundance. Finally, we demonstrate that the molecular differences between discrete mitochondrial sub-populations are capable of selectively influencing synaptic morphology in-vivo. We offer several novel mitochondrial candidates that have the propensity to significantly alter the synaptic architecture in-vivo. Conclusions Our study demonstrates discrete proteomic profiles exist dependent upon mitochondrial subcellular localization and selective alteration of intrinsic mitochondrial proteins alters synaptic morphology in-vivo

    Estimating Genetic Ancestry Proportions from Faces

    Get PDF
    Ethnicity can be a means by which people identify themselves and others. This type of identification mediates many kinds of social interactions and may reflect adaptations to a long history of group living in humans. Recent admixture in the US between groups from different continents, and the historically strong emphasis on phenotypic differences between members of these groups, presents an opportunity to examine the degree of concordance between estimates of group membership based on genetic markers and on visually-based estimates of facial features. We first measured the degree of Native American, European, African and East Asian genetic admixture in a sample of 14 self-identified Hispanic individuals, chosen to cover a broad range of Native American and European genetic admixture proportions. We showed frontal and side-view photographs of the 14 individuals to 241 subjects living in New Mexico, and asked them to estimate the degree of NA admixture for each individual. We assess the overall concordance for each observer based on an aggregated measure of the difference between the observer and the genetic estimates. We find that observers reach a significantly higher degree of concordance than expected by chance, and that the degree of concordance as well as the direction of the discrepancy in estimates differs based on the ethnicity of the observer, but not on the observers' age or sex. This study highlights the potentially high degree of discordance between physical appearance and genetic measures of ethnicity, as well as how perceptions of ethnic affiliation are context-specific. We compare our findings to those of previous studies and discuss their implications
    corecore