3 research outputs found

    The Relativistic Quantum Motions

    Full text link
    Using the relativistic quantum stationary Hamilton-Jacobi equation within the framework of the equivalence postulate, and grounding oneself on both relativistic and quantum Lagrangians, we construct a Lagrangian of a relativistic quantum system in one dimension and derive a third order equation of motion representing a first integral of the relativistic quantum Newton's law. Then, we plot the relativistic quantum trajectories of a particle moving under the constant and the linear potentials. We establish the existence of nodes and link them to the de Broglie's wavelength.Comment: Latex, 18 pages, 3 eps figure

    Interference, reduced action, and trajectories

    Get PDF
    Instead of investigating the interference between two stationary, rectilinear wave functions in a trajectory representation by examining the two rectilinear wave functions individually, we examine a dichromatic wave function that is synthesized from the two interfering wave functions. The physics of interference is contained in the reduced action for the dichromatic wave function. As this reduced action is a generator of the motion for the dichromatic wave function, it determines the dichromatic wave function's trajectory. The quantum effective mass renders insight into the behavior of the trajectory. The trajectory in turn renders insight into quantum nonlocality.Comment: 12 pages text, 5 figures. Typos corrected. Author's final submission. A companion paper to "Welcher Weg? A trajectory representation of a quantum Young's diffraction experiment", quant-ph/0605121. Keywords: interference, nonlocality, trajectory representation, entanglement, dwell time, determinis
    corecore