11 research outputs found

    Multifaceted plasminogen

    No full text

    PAI-2/SerpinB2 Inhibits Proteolytic Activity in a P. gingivalis-dominated Multispecies Bacterial Consortium

    No full text
    Objective The aim of this study was to investigate the ability of the serine protease inhibitor plasminogen activator inhibitor type 2 (PAI-2/Serpin B2) to inhibit proteases produced by a multispecies bacterial consortium in vitro. Background Gingival and periodontal inflammation is associated with an increased flow of protein-rich gingival fluid. This nutritional change in the microenvironment favors bacteria with a proteolytic phenotype, triggering inflammation and associated tissue breakdown. PAI-2 is produced by macrophages and keratinocytes and is present in very high concentrations in gingival crevicular fluid; the highest level in the body. Design A multispecies bacterial consortium comprising nine bacterial strains, resembling the conditions in a periodontal pocket, was grown planktonically and as a biofilm. After seven days PAI-2 was added to the consortium and the proteolytic activity was assayed with fluorogenic protease substrates; FITC-labeled casein to detect global protease activity, fluorescent H-Gly-Pro-AMC for serine protease activity and fluorescent BIKKAM-10 for Porphyromonas gingivalis-associated protease activity. Protease activity associated with biofilm cells was examined by confocal scanning laser microscopy. Results PAI-2 inhibited proteolytic activity of the bacterial consortium, as seen by decreased fluorescence of all substrates. PAI-2 specifically inhibited P. gingivalis proteolytic activity. Conclusion To our knowledge, this is the first time that PAI-2 has been shown to inhibit bacterial proteases. Given the high concentration of PAI-2 in the gingival region, our results indicate that PAI-2 might play a role for the integrity of the epithelial barrier

    Plasminogen coating increases initial adhesion of oral bacteria in vitro

    No full text
    Plasminogen is a major plasma protein and the zymogen of the broad spectrum protease plasmin. Plasmin activity leads to tissue degradation, direct and through activation of metalloproteinases. Infected tooth root canals, as a consequence of the inflammatory response and eventual necrosis, contain tissue fluid and blood components. These will coat the root canal walls and act as conditioning films that allow bacterial biofilms to grow and be a potential source of hematogenously spreading bacteria. We investigated the effect of in vitro surface conditioning with human plasminogen on the initial adhesion of bacteria. Four bacterial species, L. salivarius, E. faecalis, A. naeslundii, and S. gordonii, isolated from dental root canals, and three other oral streptococci, S. oralis, S. anginosus, and S. sanguinis, were grown in albumin- or plasminogen-coated flow chambers and studied by confocal laser scanning microscopy using the cell viability staining LIVE/DEAD and 16S rRNA fluorescence in situ hybridization (FISH). A. naeslundii, L. salivarius and in particular S. gordonii showed a higher initial adhesion to the plasminogen-coated surfaces. E. faecalis did not show any preference for plasminogen. Four-species biofilms cultured for 96 h showed that streptococci increased their proportion with time. Further experiments aimed at studying different streptococcal strains. All these adhered more to plasminogen-coated surfaces than to albumin-coated control surfaces. The specificity of the binding to plasminogen was verified by blocking lysine-binding sites with epsilon-aminocaproic acid. Plasminogen is thus an important plasma component for the initial adhesion of oral bacteria, in particular streptococci. This binding may contribute to their spread locally as well as to distant organs or tissues

    Modeling the development of proteolytic phenotypes in multi-species oral biofilms

    No full text
    In chronic periodontitis, subgingival biofilms induce an inflammatory response leading to periodontal tissue destruction which may cause tooth loss. The response includes exudation of fluid (GCF) from the gingival pocket, giving rise to a protein-rich micro-environment in the biofilm. We hypothesize that proteolytic activity in biofilms is a virulence factor contributing to sustained inflammation. To study the influence of GCF on proteolytic activity in a periodontitis-associated biofilm, a multi-species consortium (Porphyromonas gingivalis, Fusobacterium nucleatum, Parvimonas micra and Streptococcus constellatus) was grown in 10% equine serum (to model GCF) or BHI (control) for 2-5 days. Cell-associated and secreted proteolytic activity was investigated with zymography, fluorometry or fluorescent substrates in combination with fluorescence in situ hybridization (FISH). After 2 days, streptococci dominated the consortium in BHI whereas in serum diversity was maintained over 5 days. The serum consortium also developed proteolytic activity, which was absent in BHI. Zymography revealed an array of secreted proteases. FISH revealed proteolytic activity associated with the cell surface of P. gingivalis and F. nucleatum but not P. micra or S. constellatus. Thus, serum favored survival of P. gingivalis and F. nucleatum as well as production of proteases that can act as virulence factors in chronic periodontitis

    Plasminogen binding by oral streptococci from dental plaque and inflammatory lesions

    No full text
    Plasminogen binding by bacteria is a virulence factor important for the entry and dissemination of bacteria in the body. A wide variety of bacteria bind plasminogen, including both organisms causing disease and components of the normal oral flora. The purpose of this study was to examine the characteristics of plasminogen binding by six clinical isolates of oral streptococci from both dental plaque and inflammatory lesions. All the strains bound plasminogen with approximately the same affinity, and binding was specific and lysine-dependent as evidenced by its inhibition by epsilon-aminocaproic acid. All of the test strains were capable of activating bound plasminogen to plasmin without the addition of a plasminogen activator, and subsequent analysis revealed the presence of streptokinase in all strains. However, the streptococci exhibited fibrinolytic activity only in the presence of plasminogen and this could be inhibited by the addition of epsilon-aminocaproic acid. SDS-PAGE and 2D gel electrophoresis coupled with plasminogen ligand blotting showed that only a subset of the total proteins (2-15) were involved in the binding of plasminogen. Partial identification of the binding proteins revealed that four glycolytic enzymes, enolase, phosphoglycerate kinase, glyceraldehyde-3-phosphate dehydrogenase and phosphoglycerate mutase, were predominant in binding plasminogen. The binding of plasminogen by bacteria from pus did not differ from that of the strains from supragingival plaque. The findings illustrate how apparently innocuous commensal bacteria are capable of utilizing a mechanism that is generally regarded as being of importance to pathogenicity and suggest an additional role of plasminogen binding

    Glycoprotein 340 and sialic acid in minor-gland and whole saliva of children, adolescents, and adults.

    No full text
    Glycoprotein 340 (gp-340) is a bacterial-binding glycoprotein found in major-gland and minor-gland saliva. Sialic acid, a common terminal structure of salivary glycoproteins, interacts with microorganisms and host ligands, as well as with free radicals. This study investigated the contents of gp-340 and sialic acid in minor-gland saliva and whole saliva of children (3 yr of age), adolescents (14 yr of age), and adults (20-25 yr of age). Labial-gland saliva and buccal-gland saliva were collected on filter paper, and unstimulated whole saliva was collected by draining into a tube. The relative amount of gp-340 and sialic acid was determined by ELISA and by enzyme-linked lectin assay (ELLA), respectively. In minor-gland saliva, no statistically significant differences in gp-340 and sialic acid were seen between the age-groups. Among adults, significantly lower amounts of gp-340 and sialic acid were seen in labial saliva compared with buccal saliva. In whole saliva, the amount of gp-340 was significantly lower among adults compared with children. No differences between genders were seen. Stable content of gp-340 and sialic acid in minor-gland saliva across the age-groups, and a higher content of gp-340 in the whole saliva of the youngest age-group (3-yr-olds) compared with the adult group, may reflect that those components are vital innate factors of immunity in children's saliva

    Tissue Plasminogen Activator (t-PA) and Placental Plasminogen Activator Inhibitor (PAI-2) in Gingival Crevicular Fluid from Pa-tients with Papillon-Lefevre Syndrome

    No full text
    OBJECTIVES: Numerous patients with Papillon-Lefevre syndrome (PLS) express a severe periodontal inflammation that results in prema-ture loss of deciduous and permanent teeth. The plasminogen activat-ing (PA) system is involved in physiological and pathological processes including epithelial healing, extracellular proteolysis and local in-flammatory reactions. The aim of the study was to explore a possible role of the PA system in patients with PLS. MATERIAL AND METHODS: Samples of gingival crevicular fluid (GCF) were collected from areas with gingival infection in 20 patients with PLS and in 20 healthy controls. The concentration of tissue plasminogen activator (t-PA) and inhibitor (PAI-2) was measured with ELISA. RESULTS: The median level of PAI-2 was significantly higher (p < 0.01) in PLS pa-tients than in the controls, while the median value of t-PA did not dif-fer between the groups. No difference in t-PA or PAI-2 levels was found regarding age, gender or presence of active periodontal disease. CONCLUSION: The findings indicate an atypical activity of the PA system with a disturbed epithelial function in PLS patients, suggesting that the periodontal destruction seen in patients with PLS is secondary to a hereditary defect in the defense system

    Bacterial profiles and proteolytic activity in peri-implantitis versus healthy sitesBacterial profiles and proteolytic activity in peri-implantitis versus healthy sites

    No full text
    Peri-implantitis is a biofilm-induced destructive inflammatory process that, over time, results in loss of supporting bone around an osseointegrated dental implant. Biofilms at peri-implantitis sites have been reported to be dominated by Gram-negative anaerobic rods with a proteolytic metabolism such as, Fusobacterium, Porphyromonas, Prevotella and Tannerella, as well as anaerobic Gram-positive cocci. In this study, we hypothesized that protease activity is instrumental in driving bone destruction and we therefore compared the microbial composition and level of protease activity in samples of peri-implant biofluid (PIBF) from 25 healthy subjects (H group) and 25 subjects with peri-implantitis (PI group). Microbial composition was investigated using culture techniques and protease activity was determined using a FITC-labelled casein substrate. The microbial composition was highly variable in subjects both in the H and PI groups but one prominent difference was the prevalence of Porphyromonas/Prevotella and anaerobic Gram positive cocci which was significantly higher in the PI than in the H group. A subgroup of subjects with peri-implantitis displayed a high level of protease activity in the PIBF compared to healthy subjects. However, this activity could not be related to the presence of specific bacterial species. We propose that a high level of protease activity may be a predictive factor for disease progression in peri-implantitis. Further longitudinal studies are however required to determine whether assessment of protease activity could serve as a useful method to identify patients at risk for progressive tissue destruction
    corecore