4 research outputs found
Monitoring Protein-Protein Interactions between the Mammalian Integral Membrane Transporters and PDZ-interacting Partners Using a Modified Split-ubiquitin Membrane Yeast Two-hybrid System*S⃞
PDZ-binding motifs are found in the C-terminal tails of numerous integral membrane proteins where they mediate specific protein-protein interactions by binding to PDZ-containing proteins. Conventional yeast two-hybrid screens have been used to probe protein-protein interactions of these soluble C termini. However, to date no in vivo technology has been available to study interactions between the full-length integral membrane proteins and their cognate PDZ-interacting partners. We previously developed a split-ubiquitin membrane yeast two-hybrid (MYTH) system to test interactions between such integral membrane proteins by using a transcriptional output based on cleavage of a transcription factor from the C terminus of membrane-inserted baits. Here we modified MYTH to permit detection of C-terminal PDZ domain interactions by redirecting the transcription factor moiety from the C to the N terminus of a given integral membrane protein thus liberating their native C termini. We successfully applied this “MYTH 2.0” system to five different mammalian full-length renal transporters and identified novel PDZ domain-containing partners of the phosphate (NaPi-IIa) and sulfate (NaS1) transporters that would have otherwise not been detectable. Furthermore this assay was applied to locate the PDZ-binding domain on the NaS1 protein. We showed that the PDZ-binding domain for PDZK1 on NaS1 is upstream of its C terminus, whereas the two interacting proteins, NHERF-1 and NHERF-2, bind at a location closer to the N terminus of NaS1. Moreover NHERF-1 and NHERF-2 increased functional sulfate uptake in Xenopus oocytes when co-expressed with NaS1. Finally we used MYTH 2.0 to demonstrate that the NaPi-IIa transporter homodimerizes via protein-protein interactions within the lipid bilayer. In summary, our study establishes the MYTH 2.0 system as a novel tool for interactive proteomics studies of membrane protein complexes
Critical Care Cardiology Trials Network (CCCTN): A Cohort Profile
AIMS: The aims of the Critical Care Cardiology Trials Network (CCCTN) are to develop a registry to investigate the epidemiology of cardiac critical illness and to establish a multicentre research network to conduct randomised clinical trials (RCTs) in patients with cardiac critical illness. METHODS AND RESULTS: The CCCTN was founded in 2017 with 16 centres and has grown to a research network of over 40 academic and clinical centres in the United States and Canada. Each centre enters data for consecutive cardiac intensive care unit (CICU) admissions for at least 2 months of each calendar year. More than 20 000 unique CICU admissions are now included in the CCCTN Registry. To date, scientific observations from the CCCTN Registry include description of variations in care, the epidemiology and outcomes of all CICU patients, as well as subsets of patients with specific disease states, such as shock, heart failure, renal dysfunction, and respiratory failure. The CCCTN has also characterised utilization patterns, including use of mechanical circulatory support in response to changes in the heart transplantation allocation system, and the use and impact of multidisciplinary shock teams. Over years of multicentre collaboration, the CCCTN has established a robust research network to facilitate multicentre registry-based randomised trials in patients with cardiac critical illness. CONCLUSION: The CCCTN is a large, prospective registry dedicated to describing processes-of-care and expanding clinical knowledge in cardiac critical illness. The CCCTN will serve as an investigational platform from which to conduct randomised controlled trials in this important patient population
Recommended from our members
Critical Care Cardiology Trials Network (CCCTN): a cohort profile.
AIMS: The aims of the Critical Care Cardiology Trials Network (CCCTN) are to develop a registry to investigate the epidemiology of cardiac critical illness and to establish a multicenter research network to conduct randomized clinical trials (RCTs) in patients with cardiac critical illness.
METHODS AND RESULTS: The CCCTN was founded in 2017 with 16 centers and has grown to a research network of over 40 academic and clinical centers in the United States and Canada. Each center enters data for consecutive cardiac intensive care unit (CICU) admissions for at least two months of each calendar year. More than 20 000 unique CICU admissions are now included in the CCCTN Registry. To date, scientific observations from the CCCTN Registry include description of variations in care, the epidemiology and outcomes of all CICU patients, as well as subsets of patients with specific disease states, such as shock, heart failure, renal dysfunction, and respiratory failure. The CCCTN has also characterized utilization patterns, including use of mechanical circulatory support in response to changes in the heart transplantation allocation system, and the use and impact of multidisciplinary shock teams. Over years of multicenter collaboration, the CCCTN has established a robust research network to facilitate multicenter registry-based randomized trials in patients with cardiac critical illness.
CONCLUSIONS: The CCCTN is a large, prospective registry dedicated to describing processes-of-care and expanding clinical knowledge in cardiac critical illness. The CCCTN will serve as an investigational platform from which to conduct randomized controlled trials in this important patient population