1 research outputs found
LISA observations of massive black hole mergers: event rates and issues in waveform modelling
The observability of gravitational waves from supermassive and
intermediate-mass black holes by the forecoming Laser Interferometer Space
Antenna (LISA), and the physics we can learn from the observations, will depend
on two basic factors: the event rates for massive black hole mergers occurring
in the LISA best sensitivity window, and our theoretical knowledge of the
gravitational waveforms. We first provide a concise review of the literature on
LISA event rates for massive black hole mergers, as predicted by different
formation scenarios. Then we discuss what (in our view) are the most urgent
issues to address in terms of waveform modelling. For massive black hole binary
inspiral these include spin precession, eccentricity, the effect of high-order
Post-Newtonian terms in the amplitude and phase, and an accurate prediction of
the transition from inspiral to plunge. For black hole ringdown, numerical
relativity will ultimately be required to determine the relative quasinormal
mode excitation, and to reduce the dimensionality of the template space in
matched filtering.Comment: 14 pages, 2 figures. Added section with conclusions and outlook.
Matches version to appear in the proceedings of 10th Annual Gravitational
Wave Data Analysis Workshop (GWDAW 10), Brownsville, Texas, 14-17 Dec 200