3,795 research outputs found
Stability of five-dimensional rotating black holes projected on the brane
We study the stability of five-dimensional Myers-Perry black holes with a
single angular momentum under linear perturbations, and we compute the
quasinormal modes (QNM's) of the black hole metric projected on the brane,
using Leaver's continued fraction method. In our numerical search we do not
find unstable modes. The damping time of modes having l=m=2 and l=m=1 tends to
infinity as the black hole spin tends to the extremal value, showing a
behaviour reminiscent of the one observed for ordinary 4-dimensional Kerr black
holes.Comment: 8 pages, 2 figures. Updated to match the version published on PRD.
Corrected a small typo (which does not affect the results) in equation (6) of
the published pape
Quasinormal modes of Kerr-Newman black holes: coupling of electromagnetic and gravitational perturbations
We compute numerically the quasinormal modes of Kerr-Newman black holes in
the scalar case, for which the perturbation equations are separable. Then we
study different approximations to decouple electromagnetic and gravitational
perturbations of the Kerr-Newman metric, computing the corresponding
quasinormal modes. Our results suggest that the Teukolsky-like equation derived
by Dudley and Finley gives a good approximation to the dynamics of a rotating
charged black hole for Q<M/2. Though insufficient to deal with Kerr-Newman
based models of elementary particles, the Dudley-Finley equation should be
adequate for astrophysical applications.Comment: 13 pages, 3 figures. Minor changes to match version accepted in Phys.
Rev.
Aligned spin neutron star-black hole mergers: a gravitational waveform amplitude model
The gravitational radiation emitted during the merger of a black hole with a
neutron star is rather similar to the radiation from the merger of two black
holes when the neutron star is not tidally disrupted. When tidal disruption
occurs, gravitational waveforms can be broadly classified in two groups,
depending on the spatial extent of the disrupted material. Extending previous
work by some of us, here we present a phenomenological model for the
gravitational waveform amplitude in the frequency domain encompassing the three
possible outcomes of the merger: no tidal disruption, "mild" and "strong" tidal
disruption. The model is calibrated to 134 general-relativistic numerical
simulations of binaries where the black hole spin is either aligned or
antialigned with the orbital angular momentum. All simulations were produced
using the SACRA code and piecewise polytropic neutron star equations of state.
The present model can be used to determine when black-hole binary waveforms are
sufficient for gravitational-wave detection, to extract information on the
equation of state from future gravitational-wave observations, to obtain more
accurate estimates of black hole-neutron star merger event rates, and to
determine the conditions under which these systems are plausible candidates as
central engines of gamma-ray bursts, macronovae and kilonovae.Comment: 15 pages, 7 figures, 1 tabl
Explaining LIGO's observations via isolated binary evolution with natal kicks
We compare binary evolution models with different assumptions about
black-hole natal kicks to the first gravitational-wave observations performed
by the LIGO detectors. Our comparisons attempt to reconcile merger rate,
masses, spins, and spin-orbit misalignments of all current observations with
state-of-the-art formation scenarios of binary black holes formed in isolation.
We estimate that black holes (BHs) should receive natal kicks at birth of the
order of (50) km/s if tidal processes do (not) realign
stellar spins. Our estimate is driven by two simple factors. The natal kick
dispersion is bounded from above because large kicks disrupt too many
binaries (reducing the merger rate below the observed value). Conversely, the
natal kick distribution is bounded from below because modest kicks are needed
to produce a range of spin-orbit misalignments. A distribution of misalignments
increases our models' compatibility with LIGO's observations, if all BHs are
likely to have natal spins. Unlike related work which adopts a concrete BH
natal spin prescription, we explore a range of possible BH natal spin
distributions. Within the context of our models, for all of the choices of
used here and within the context of one simple fiducial parameterized
spin distribution, observations favor low BH natal spin.Comment: 19 pages, 14 figures, as published in PR
Final spins from the merger of precessing binary black holes
The inspiral of binary black holes is governed by gravitational radiation
reaction at binary separations r < 1000 M, yet it is too computationally
expensive to begin numerical-relativity simulations with initial separations r
> 10 M. Fortunately, binary evolution between these separations is well
described by post-Newtonian equations of motion. We examine how this
post-Newtonian evolution affects the distribution of spin orientations at
separations r ~ 10 M where numerical-relativity simulations typically begin.
Although isotropic spin distributions at r ~ 1000 M remain isotropic at r ~ 10
M, distributions that are initially partially aligned with the orbital angular
momentum can be significantly distorted during the post-Newtonian inspiral.
Spin precession tends to align (anti-align) the binary black hole spins with
each other if the spin of the more massive black hole is initially partially
aligned (anti-aligned) with the orbital angular momentum, thus increasing
(decreasing) the average final spin. Spin precession is stronger for
comparable-mass binaries, and could produce significant spin alignment before
merger for both supermassive and stellar-mass black hole binaries. We also
point out that precession induces an intrinsic accuracy limitation (< 0.03 in
the dimensionless spin magnitude, < 20 degrees in the direction) in predicting
the final spin resulting from the merger of widely separated binaries.Comment: 20 pages, 16 figures, new PN terms, submitted to PR
- …