701 research outputs found
Optical Response of SrRuO Reveals Universal Fermi-liquid Scaling and Quasiparticles Beyond Landau Theory
We report optical measurements demonstrating that the low-energy relaxation
rate () of the conduction electrons in SrRuO obeys scaling
relations for its frequency () and temperature () dependence in
accordance with Fermi-liquid theory. In the thermal relaxation regime,
1/\tau\propto (\hbar\omega)^2 + (p\pi\kB T)^2 with , and
scaling applies. Many-body electronic structure calculations using dynamical
mean-field theory confirm the low-energy Fermi-liquid scaling, and provide
quantitative understanding of the deviations from Fermi-liquid behavior at
higher energy and temperature. The excess optical spectral weight in this
regime provides evidence for strongly dispersing "resilient" quasiparticle
excitations above the Fermi energy
Large modulation of the Shubnikov-de Haas oscillations by the Rashba interaction at the LaAlO/SrTiO interface
We investigate the 2-dimensional Fermi surface of high-mobility
LaAlO/SrTiO interfaces using Shubnikov-de Haas oscillations. Our
analysis of the oscillation pattern underscores the key role played by the
Rashba spin-orbit interaction brought about by the breaking of inversion
symmetry, as well as the dominant contribution of the heavy /
orbitals on electrical transport. We furthermore bring into light the complex
evolution of the oscillations with the carrier density, which is tuned by the
field effect
Breakup of the Fermi surface near the Mott transition in low-dimensional systems
We investigate the Mott transition in weakly-coupled one-dimensional (1d)
fermionic chains. Using a generalization of Dynamic Mean Field Theory, we show
that the Mott gap is suppressed at some critical hopping . The
transition from the 1d insulator to a 2d metal proceeds through an intermediate
phase where the Fermi surface is broken into electron and hole pockets. The
quasiparticle spectral weight is strongly anisotropic along the Fermi surface,
both in the intermediate and metallic phases. We argue that such pockets would
look like `arcs' in photoemission experiments.Comment: REVTeX 4, 5 pages, 4 EPS figures. References added; problem with
figure 4 fixed; typos correcte
Strong-coupling analysis of scanning tunneling spectra in BiSrCaCuO
We study a series of spectra measured in the superconducting state of
optimally-doped Bi-2223 by scanning tunneling spectroscopy. Each spectrum, as
well as the average of spectra presenting the same gap, is fitted using a
strong-coupling model taking into account the band structure, the BCS gap, and
the interaction of electrons with the spin resonance. After describing our
measurements and the main characteristics of the strong-coupling model, we
report the whole set of parameters determined from the fits, and we discuss
trends as a function of the gap magnitude. We also simulate angle-resolved
photoemission spectra, and compare with recent experimental results.Comment: Published versio
Countercurrent chromatography in analytical chemistry (IUPAC technical report)
© 2009 IUPACCountercurrent chromatography (CCC) is a generic term covering all forms of liquid-liquid chromatography that use a support-free liquid stationary phase held in place by a simple centrifugal or complex centrifugal force field. Biphasic liquid systems are used with one liquid phase being the stationary phase and the other being the mobile phase. Although initiated almost 30 years ago, CCC lacked reliable columns. This is changing now, and the newly designed centrifuges appearing on the market make excellent CCC columns. This review focuses on the advantages of a liquid stationary phase and addresses the chromatographic theory of CCC. The main difference with classical liquid chromatography (LC) is the variable volume of the stationary phase. There are mainly two different ways to obtain a liquid stationary phase using centrifugal forces, the hydrostatic way and the hydrodynamic way. These two kinds of CCC columns are described and compared. The reported applications of CCC in analytical chemistry and comparison with other separation and enrichment methods show that the technique can be successfully used in the analysis of plants and other natural products, for the separation of biochemicals and pharmaceuticals, for the separation of alkaloids from medical herbs, in food analysis, etc. On the basis of the studies of the last two decades, recommendations are also given for the application of CCC in trace inorganic analysis and in radioanalytical chemistry
Tunneling spectra of strongly coupled superconductors: Role of dimensionality
We investigate numerically the signatures of collective modes in the
tunneling spectra of superconductors. The larger strength of the signatures
observed in the high-Tc superconductors, as compared to classical low-Tc
materials, is explained by the low dimensionality of these layered compounds.
We also show that the strong-coupling structures are dips (zeros in the d2I/dV2
spectrum) in d-wave superconductors, rather than the steps (peaks in d2I/dV2)
observed in classical s-wave superconductors. Finally we question the
usefulness of effective density of states models for the analysis of tunneling
data in d-wave superconductors.Comment: 8 pages, 6 figure
Multi-band Superconductivity in the Chevrel Phases SnMo6S8 and PbMo6S8
Sub-Kelvin scanning tunnelling spectroscopy in the Chevrel Phases SnMo6S8 and
PbMo6S8 reveals two distinct superconducting gaps with Delta_1 = 3 meV, Delta_2
~ 1.0 meV and Delta_1 = 3.1 meV, Delta_2 ~ 1.4 meV respectively. The gap
distribution is strongly anisotropic, with Delta_2 predominantly seen when
scanning across unit-cell steps on the (001) sample surface. The spectra are
well-fitted by an anisotropic two-band BCS s-wave gap function. Our
spectroscopic data are confirmed by electronic heat capacity measurements which
also provide evidence for a twin-gap scenario.Comment: 5 pages, 4 figure
Node-like excitations in superconducting PbMo6S8 probed by scanning tunneling spectroscopy
We present the first scanning tunneling spectroscopy study on the Chevrel
phase PbMo6S8, an extreme type II superconductor with a coherence length only
slightly larger than in high-Tc cuprates. Tunneling spectra measured on
atomically flat terraces are spatially homogeneous and show well-defined
coherence peaks. The low-energy spectral weight, the zero bias conductance and
the temperature dependence of the gap are incompatible with a conventional
isotropic s-wave interpretation, revealing the presence of low-energy
excitations in the superconducting state. We show that our data are consistent
with the presence of nodes in the superconducting gap.Comment: To appear in PRB; 5 pages, 4 figure
Schottky barrier heights at polar metal/semiconductor interfaces
Using a first-principle pseudopotential approach, we have investigated the
Schottky barrier heights of abrupt Al/Ge, Al/GaAs, Al/AlAs, and Al/ZnSe (100)
junctions, and their dependence on the semiconductor chemical composition and
surface termination. A model based on linear-response theory is developed,
which provides a simple, yet accurate description of the barrier-height
variations with the chemical composition of the semiconductor. The larger
barrier values found for the anion- than for the cation-terminated surfaces are
explained in terms of the screened charge of the polar semiconductor surface
and its image charge at the metal surface. Atomic scale computations show how
the classical image charge concept, valid for charges placed at large distances
from the metal, extends to distances shorter than the decay length of the
metal-induced-gap states.Comment: REVTeX 4, 11 pages, 6 EPS figure
Heterovalent interlayers and interface states: an ab initio study of GaAs/Si/GaAs (110) and (100) heterostructures
We have investigated ab initio the existence of localized states and
resonances in abrupt GaAs/Si/GaAs (110)- and (100)-oriented heterostructures
incorporating 1 or 2 monolayers (MLs) of Si, as well as in the fully developed
Si/GaAs (110) heterojunction. In (100)-oriented structures, we find both
valence- and conduction-band related near-band edge states localized at the
Si/GaAs interface. In the (110) systems, instead, interface states occur deeper
in the valence band; the highest valence-related resonances being about 1 eV
below the GaAs valence-band maximum. Using their characteristic bonding
properties and atomic character, we are able to follow the evolution of the
localized states and resonances from the fully developed Si/GaAs binary
junction to the ternary GaAs/Si/GaAs (110) systems incorporating 2 or 1 ML of
Si. This approach also allows us to show the link between the interface states
of the (110) and (100) systems. Finally, the conditions for the existence of
localized states at the Si/GaAs (110) interface are discussed based on a
Koster-Slater model developed for the interface-state problem.Comment: REVTeX 4, 14 pages, 15 EPS figure
- …