2,195 research outputs found

    Equilibrium ultrastable glasses produced by random pinning

    Full text link
    Ultrastable glasses have risen to prominence due to their potentially useful material properties and the tantalizing possibility of a general method of preparation via vapor deposition. Despite the importance of this novel class of amorphous materials, numerical studies have been scarce because achieving ultrastability in atomistic simulations is an enormous challenge. Here we bypass this difficulty and establish that randomly pinning the position of a small fraction of particles inside an equilibrated supercooled liquid generates ultrastable configurations at essentially no numerical cost, while avoiding undesired structural changes due to the preparation protocol. Building on the analogy with vapor-deposited ultrastable glasses, we study the melting kinetics of these configurations following a sudden temperature jump into the liquid phase. In homogeneous geometries, we find that enhanced kinetic stability is accompanied by large scale dynamic heterogeneity, while a competition between homogeneous and heterogeneous melting is observed when a liquid boundary invades the glass at constant velocity. Our work demonstrates the feasibility of large-scale, atomistically resolved, and experimentally relevant simulations of the kinetics of ultrastable glasses.Comment: 9 pages, 5 figure

    Can the jamming transition be described using equilibrium statistical mechanics?

    Full text link
    When materials such as foams or emulsions are compressed, they display solid behaviour above the so-called `jamming' transition. Because compression is done out-of-equilibrium in the absence of thermal fluctuations, jamming appears as a new kind of a nonequilibrium phase transition. In this proceeding paper, we suggest that tools from equilibrium statistical mechanics can in fact be used to describe many specific features of the jamming transition. Our strategy is to introduce thermal fluctuations and use statistical mechanics to describe the complex phase behaviour of systems of soft repulsive particles, before sending temperature to zero at the end of the calculation. We show that currently available implementations of standard tools such as integral equations, mode-coupling theory, or replica calculations all break down at low temperature and large density, but we suggest that new analytical schemes can be developed to provide a fully microscopic, quantitative description of the jamming transition.Comment: 8 pages, 6 figs. Talk presented at Statphys24 (July 2010, Cairns, Australia

    Jamming transitions in amorphous packings of frictionless spheres occur over a continuous range of volume fractions

    Full text link
    We numerically produce fully amorphous assemblies of frictionless spheres in three dimensions and study the jamming transition these packings undergo at large volume fractions. We specify four protocols yielding a critical value for the jamming volume fraction which is sharply defined in the limit of large system size, but is different for each protocol. Thus, we directly establish the existence of a continuous range of volume fraction where nonequilibrium jamming transitions occur. However, these jamming transitions share the same critical behaviour. Our results suggest that, even in the absence of partial crystalline ordering, a unique location of a random close packing does not exist, and that volume fraction alone is not sufficient to describe the properties of jammed states.Comment: 5 pages, 3 fig

    A Molecular Hydrodynamic Theory of Supercooled Liquids and Colloidal Suspensions under Shear

    Full text link
    We extend the conventional mode-coupling theory of supercooled liquids to systems under stationary shear flow. Starting from generalized fluctuating hydrodynamics, a nonlinear equation for the intermediate scattering function is constructed. We evaluate the solution numerically for a model of a two dimensional colloidal suspension and find that the structural relaxation time decreases as γ˙−ν\dot{\gamma}^{-\nu} with an exponent ν≤1\nu \leq 1, where γ˙\dot{\gamma} is the shear rate. The results are in qualitative agreement with recent molecular dynamics simulations. We discuss the physical implications of the results.Comment: 5 pages, 1 figur

    Crossovers in the dynamics of supercooled liquids probed by an amorphous wall

    Full text link
    We study the relaxation dynamics of a binary Lennard-Jones liquid in the presence of an amorphous wall generated from equilibrium particle configurations. In qualitative agreement with the results presented in Nature Phys. {\bf 8}, 164 (2012) for a liquid of harmonic spheres, we find that our binary mixture shows a saturation of the dynamical length scale close to the mode-coupling temperature TcT_c. Furthermore we show that, due to the broken symmetry imposed by the wall, signatures of an additional change in dynamics become apparent at a temperature well above TcT_c. We provide evidence that this modification in the relaxation dynamics occurs at a recently proposed dynamical crossover temperature Ts>TcT_s > T_c, which is related to the breakdown of the Stokes-Einstein relation. We find that this dynamical crossover at TsT_s is also observed for a system of harmonic spheres as well as a WCA liquid, showing that it may be a general feature of glass-forming systems.Comment: 10 pages, 8 figure

    NMR evidence for a strong modulation of the Bose-Einstein Condensate in BaCuSi2_2O6_6

    Full text link
    We present a 63,65^{63,65}Cu and 29^{29}Si NMR study of the quasi-2D coupled spin 1/2 dimer compound BaCuSi2_2O6_6 in the magnetic field range 13-26 T and at temperatures as low as 50 mK. NMR data in the gapped phase reveal that below 90 K different intra-dimer exchange couplings and different gaps (ΔB/ΔA\Delta_{\rm{B}}/\Delta_{\rm{A}} = 1.16) exist in every second plane along the c-axis, in addition to a planar incommensurate (IC) modulation. 29^{29}Si spectra in the field induced magnetic ordered phase reveal that close to the quantum critical point at Hc1H_{\rm{c1}} = 23.35 T the average boson density nˉ\bar{n} of the Bose-Einstein condensate is strongly modulated along the c-axis with a density ratio for every second plane nˉA/nˉB≃5\bar{n}_{\rm{A}}/\bar{n}_{\rm{B}} \simeq 5. An IC modulation of the local density is also present in each plane. This adds new constraints for the understanding of the 2D value ϕ\phi = 1 of the critical exponent describing the phase boundary

    Unified study of glass and jamming rheology in soft particle systems

    Full text link
    We explore numerically the shear rheology of soft repulsive particles at large volume fraction. The interplay between viscous dissipation and thermal motion results in multiple rheological regimes encompassing Newtonian, shear-thinning and yield stress regimes near the `colloidal' glass transition when thermal fluctuations are important, crossing over to qualitatively similar regimes near the `jamming' transition when dissipation dominates. In the crossover regime, glass and jamming sectors coexist and give complex flow curves. Although glass and jamming limits are characterized by similar macroscopic flow curves, we show that they occur over distinct time and stress scales and correspond to distinct microscopic dynamics. We propose a simple rheological model describing the glass to jamming crossover in the flow curves, and discuss the experimental implications of our results.Comment: 5 pages, 3 figs; v2 accepted to publication to Phys. Rev. Let

    Highly nonlinear dynamics in a slowly sedimenting colloidal gel

    Full text link
    We use a combination of original light scattering techniques and particles with unique optical properties to investigate the behavior of suspensions of attractive colloids under gravitational stress, following over time the concentration profile, the velocity profile, and the microscopic dynamics. During the compression regime, the sedimentation velocity grows nearly linearly with height, implying that the gel settling may be fully described by a (time-dependent) strain rate. We find that the microscopic dynamics exhibit remarkable scaling properties when time is normalized by strain rate, showing that the gel microscopic restructuring is dominated by its macroscopic deformation.Comment: Physical Review Letters (2011) xxx

    Slow flows of yield stress fluids: complex spatio-temporal behaviour within a simple elasto-plastic model

    Full text link
    A minimal athermal model for the flow of dense disordered materials is proposed, based on two generic ingredients: local plastic events occuring above a microscopic yield stress, and the non-local elastic release of the stress these events induce in the material. A complex spatio-temporal rheological behaviour results, with features in line with recent experimental observations. At low shear rates, macroscopic flow actually originates from collective correlated bursts of plastic events, taking place in dynamically generated fragile zones. The related correlation length diverges algebraically at small shear rates. In confined geometries bursts occur preferentially close to the walls yielding an intermittent form of flow localization.Comment: 4 pages, 4 figure

    Modern computational studies of the glass transition

    Full text link
    The physics of the glass transition and amorphous materials continues to attract the attention of a wide research community after decades of effort. Supercooled liquids and glasses have been studied numerically since the advent of molecular dynamics and Monte Carlo simulations in the last century. Computer studies have greatly enhanced both experimental discoveries and theoretical developments and constitute an active and continually expanding research field. Our goal in this review is to provide a modern perspective on this area. We describe the need to go beyond canonical methods to attack a problem that is notoriously difficult in terms of time scales, length scales, and physical observables. We first summarise recent algorithmic developments to achieve enhanced sampling and faster equilibration using replica exchange methods, cluster and swap Monte Carlo algorithms, and other techniques. We then review some major recent advances afforded by these novel tools regarding the statistical mechanical description of the liquid-to-glass transition as well as the mechanical, vibrational and thermal properties of the glassy solid. We finally describe some important challenges for future research
    • …
    corecore