2,212 research outputs found
Equilibrium equation of state of a hard sphere binary mixture at very large densities using replica exchange Monte-Carlo simulations
We use replica exchange Monte-Carlo simulations to measure the equilibrium
equation of state of the disordered fluid state for a binary hard sphere
mixture up to very large densities where standard Monte-Carlo simulations do
not easily reach thermal equilibrium. For the moderate system sizes we use (up
to N=100), we find no sign of a pressure discontinuity near the location of
dynamic glass singularities extrapolated using either algebraic or simple
exponential divergences, suggesting they do not correspond to genuine
thermodynamic glass transitions. Several scenarios are proposed for the fate of
the fluid state in the thermodynamic limit.Comment: 10 pages, 8 fig
Estimation of the normal contact stiffness for frictional interface in sticking and sliding conditions
Modeling of frictional contact systems with high accuracy needs the knowledge of several contact parameters, which are mainly related to the local phenomena at the contact interfaces and affect the complex dynamics of mechanical systems in a prominent way. This work presents a newer approach for identifying reliable values of the normal contact stiffness between surfaces in contact, in both sliding and sticking conditions. The combination of experimental tests, on a dedicated set-up, with finite element modeling, allowed for an indirect determination of the normal contact stiffness. The stiffness was found to increase with increasing contact pressure and decreasing roughness, while the evolution of surface topography and third-body rheology affected the contact stiffness when sliding
Brambilla et al. Reply to a Comment by J. Reinhardt et al. on "Probing the equilibrium dynamics of colloidal hard spheres above the mode-coupling glass transition"
G. Brambilla et al. Reply to a Comment by J. Reinhardt et al. questioning the
existence of equilibrium dynamics above the critical volume fraction of
colloidal hard spheres predicted by mode coupling theory.Comment: To appear in Phys. Rev. Lett. Reply to a Comment by J. Reinhardt et
al. (see arXiv:1010.2891), which questions the existence of equilibrium
dynamics above the critical volume fraction of glassy colloidal hard spheres
predicted by mode coupling theor
Spin dynamics of the spin-Peierls compound CuGeO_3 under magnetic field
The magnetic field--driven transition in the spin-Peierls system CuGeO_3
associated with the closing of the spin gap is investigated numerically. The
field dependence of the spin dynamical structure factor (seen by inelastic
neutron scattering) and of the momentum dependent static susceptibility are
calculated. In the dimerized phase (H<H_c), we suggest that the strong field
dependence of the transverse susceptibility could be experimentally seen from
the low temperature spin-echo relaxation rate 1/T_{2G} or the second moment of
the NMR spectrum. Above H_c low energy spin excitations appear at
incommensurate wave vectors where the longitudinal susceptibility chi_{zz}(q)
peaks.Comment: 4 pages, LaTeX, postscript figures include
Novel Crossover in Coupled Spin Ladders
We report a novel crossover behavior in the long-range-ordered phase of a
prototypical spin- Heisenberg antiferromagnetic ladder compound
. The staggered order was previously evidenced
from a continuous and symmetric splitting of N NMR spectral lines on
lowering temperature below mK, with a saturation towards
mK. Unexpectedly, the split lines begin to further separate away
below mK while the line width and shape remain completely
invariable. This crossover behavior is further corroborated by the NMR
relaxation rate measurements. A very strong suppression reflecting
the ordering, , observed above , is replaced by
below . These original NMR features are indicative of
unconventional nature of the crossover, which may arise from a unique
arrangement of the ladders into a spatially anisotropic and frustrated coupling
network.Comment: 5 pages, 3 figure
Lifetime of dynamic heterogeneity in strong and fragile kinetically constrained spin models
Kinetically constrained spin models are schematic coarse-grained models for
the glass transition which represent an efficient theoretical tool to study
detailed spatio-temporal aspects of dynamic heterogeneity in supercooled
liquids. Here, we study how spatially correlated dynamic domains evolve with
time and compare our results to various experimental and numerical
investigations. We find that strong and fragile models yield different results.
In particular, the lifetime of dynamic heterogeneity remains constant and
roughly equal to the alpha relaxation time in strong models, while it increases
more rapidly in fragile models when the glass transition is approached.Comment: Submitted to the proceedings of the 6th EPS Liquid Matter Conference,
Utrecht 2-6 July 200
Criticality in Dynamic Arrest: Correspondence between Glasses and Traffic
Dynamic arrest is a general phenomenon across a wide range of dynamic
systems, but the universality of dynamic arrest phenomena remains unclear. We
relate the emergence of traffic jams in a simple traffic flow model to the
dynamic slow down in kinetically constrained models for glasses. In kinetically
constrained models, the formation of glass becomes a true (singular) phase
transition in the limit . Similarly, using the Nagel-Schreckenberg
model to simulate traffic flow, we show that the emergence of jammed traffic
acquires the signature of a sharp transition in the deterministic limit \pp\to
1, corresponding to overcautious driving. We identify a true dynamical
critical point marking the onset of coexistence between free flowing and jammed
traffic, and demonstrate its analogy to the kinetically constrained glass
models. We find diverging correlations analogous to those at a critical point
of thermodynamic phase transitions.Comment: 4 pages, 4 figure
- …