1,491 research outputs found
A review on ground-based measurements of cosmic rays
This paper summarises recent results on the cosmic ray energy spectrum, composition and anisotropy from the knee region to the GZK cutoff [1,2] of the spectrum by means of ground-based experiments. Most of the information reported in this contribution is taken from [3, 4]
Implementation of the Linear Method for the optimization of Jastrow-Feenberg and Backflow Correlations
We present a fully detailed and highly performing implementation of the
Linear Method [J. Toulouse and C. J. Umrigar (2007)] to optimize
Jastrow-Feenberg and Backflow Correlations in many-body wave-functions, which
are widely used in condensed matter physics. We show that it is possible to
implement such optimization scheme performing analytical derivatives of the
wave-function with respect to the variational parameters achieving the best
possible complexity O(N^3) in the number of particles N.Comment: submitted to the Comp. Phys. Com
Multi-photon Rabi oscillations in high spin paramagnetic impurity
We report on multiple photon monochromatic quantum oscillations (Rabi
oscillations) observed by pulsed EPR (Electron Paramagnetic Resonance) of
Mn (S=5/2) impurities in MgO. We find that when the microwave magnetic
field is similar or large than the anisotropy splitting, the Rabi oscillations
have a spectrum made of many frequencies not predicted by the S=1/2 Rabi model.
We show that these new frequencies come from multiple photon coherent
manipulation of the multi-level spin impurity. We develop a model based on the
crystal field theory and the rotating frame approximation, describing the
observed phenomenon with a very good agreement.Comment: International Conference: Resonance in Condensed Matter Altshuler 10
High Curie temperature Mn 5 Ge 3 thin films produced by non-diffusive reaction
Polycrystalline Mn 5 Ge 3 thin films were produced on SiO 2 using magnetron
sputtering and reactive diffusion (RD) or non-diffusive reaction (NDR). In situ
X-ray diffraction and atomic force microscopy were used to determine the layer
structures, and magnetic force microscopy, superconducting quantum interference
device and ferromagnetic resonance were used to determine their magnetic
properties. RD-mediated layers exhibit similar magnetic properties as MBE-grown
monocrystalline Mn 5 Ge 3 thin films, while NDR-mediated layers show magnetic
properties similar to monocrystalline C-doped Mn 5 Ge 3 C x thin films with
NDR appears as a CMOS-compatible efficient method to
produce good magnetic quality high-curie temperature Mn 5 Ge 3 thin films
Entrapment of magnetic micro-crystals for on-chip electron spin resonance studies
On-chip Electron Spin Resonance (ESR) of magnetic molecules requires the
ability to precisely position nanosized samples in antinodes of the
electro-magnetic field for maximal magnetic interaction. A method is developed
to entrap micro-crystals containing spins in a well defined location on a
substrate's surface. Traditional cavity ESR measurements are then performed on
a mesoscopic crystal at 34 GHz. Polycrystalline diluted Cr spins were
entrapped as well and measured while approaching the lower limit of the ESR
sensitivity. This method suggests the feasibility of on-chip ESR measurements
at dilution refrigerator temperatures by enabling the positioning of samples
atop an on-chip superconducting cavity.Comment: to appear in Journal of Applied Physic
Spin-Orbit Coupling Fluctuations as a Mechanism of Spin Decoherence
We discuss a general framework to address spin decoherence resulting from
fluctuations in a spin Hamiltonian. We performed a systematic study on spin
decoherence in the compound K[VAsO(DO)]
8DO, using high-field Electron Spin Resonance (ESR). By analyzing the
anisotropy of resonance linewidths as a function of orientation, temperature
and field, we find that the spin-orbit term is a major decoherence source. The
demonstrated mechanism can alter the lifetime of any spin qubit and we discuss
how to mitigate it by sample design and field orientation.Comment: submitte
Stack-CNN algorithm: A new approach for the detection of space objects
We present a new trigger algorithm combining a stacking procedure and a Convolutional Neural Network that could be applied to any space object moving linearly or with a known trajectory in the field of view of a telescope. This includes the detection of high velocity fragmentation debris in orbit. A possible implementation is as trigger system for an orbiting Space Debris remediation system. The algorithm was initially developed as offline system for the Multiwavelength Imaging New Instrument for the Extreme Universe Space Observatory (Mini-EUSO), on the International Space Station. We evaluated the performance of the algorithm on simulated data and compared it with those obtained by means of a more conventional trigger algorithm. Results indicate that this method would allow to recognise signals with 1% Signal over Background Ratio (SBR) on poissonian random fluctuations with a negligible fake trigger rate. Such promising results lead us to not only consider this technique as an online trigger system, but also as an offline method for searching moving signals and their characteristics (speed and direction). More generally, any kind of telescope (on the ground or in space) such as those used for space debris, meteors monitoring or cosmic ray science, could benefit from this automatized technique. The content of this paper is part of the recent Italian patent proposal submitted by the authors (patent application number: 102021000009845)
- …