60 research outputs found
Guidelines for the design, conduct and reporting of human intervention studies to evaluate the health benefits of foods
There is substantial evidence to link what we eat to the reduction of the risk of major chronic diseases and/or the improvement of functions. Thus, it is important for public health agencies and the food industry to facilitate the consumption of foods with particular health benefits by providing consumer products and messages based on scientific evidence. Although fragmentary advice is available from a range of sources, there is a lack of comprehensive scientific guidelines for the design, conduct and reporting of human intervention studies to evaluate the health benefits of foods. Such guidelines are needed both to support nutrition science in general, and to facilitate the substantiation of health claims. In the present study, which presents the consensus view of an International Life Sciences Institute Europe Expert Group that included senior scientists from academia and industry, the term †foods’ refers to foods, dietary supplements and food constituents, but not to whole diets. The present study is based on an initial survey of published papers, which identified the range and strengths and weaknesses of current methodologies, and was finalised following exchanges between representatives from industry, academia and regulatory bodies. The major factors involved in the design, conduct and reporting of studies are identified, summarised in a checklist table that is based on the Consolidated Standards of Reporting Trials guidelines, and elaborated and discussed in the text. © 2011 ILSI Europe
Guidelines for the design, conduct and reporting of human intervention studies to evaluate the health benefits of foods
There is substantial evidence to link what we eat to the reduction of the risk of major chronic diseases and/or the improvement of functions. Thus, it is important for public health agencies and the food industry to facilitate the consumption of foods with particular health benefits by providing consumer products and messages based on scientific evidence. Although fragmentary advice is available from a range of sources, there is a lack of comprehensive scientific guidelines for the design, conduct and reporting of human intervention studies to evaluate the health benefits of foods. Such guidelines are needed both to support nutrition science in general, and to facilitate the substantiation of health claims. In the present study, which presents the consensus view of an International Life Sciences Institute Europe Expert Group that included senior scientists from academia and industry, the term ‘foods' refers to foods, dietary supplements and food constituents, but not to whole diets. The present study is based on an initial survey of published papers, which identified the range and strengths and weaknesses of current methodologies, and was finalised following exchanges between representatives from industry, academia and regulatory bodies. The major factors involved in the design, conduct and reporting of studies are identified, summarised in a checklist table that is based on the Consolidated Standards of Reporting Trials guidelines, and elaborated and discussed in the tex
A chemical survey of exoplanets with ARIEL
Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planet’s birth, and evolution. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25–7.8 μm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and well-defined planet sample within its 4-year mission lifetime. Transit, eclipse and phase-curve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10–100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H2O, CO2, CH4 NH3, HCN, H2S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performed – using conservative estimates of mission performance and a full model of all significant noise sources in the measurement – using a list of potential ARIEL targets that incorporates the latest available exoplanet statistics. The conclusion at the end of the Phase A study, is that ARIEL – in line with the stated mission objectives – will be able to observe about 1000 exoplanets depending on the details of the adopted survey strategy, thus confirming the feasibility of the main science objectives.Peer reviewedFinal Published versio
The COVID-19 pandemic and its global effects on dental practice : An International survey
Objectives: A multicentre survey was designed to evaluate the impact of COVID-19 outbreak on dental practice worldwide, estimate the COVID-19 related symptoms/signs, work attitudes and behaviour and the routine use of protective measures and Personal Protective Equipment (PPE). Methods: A global survey using a standardized questionnaire with research groups from 36 countries was designed. The questionnaire was developed and pretested during April 2020 and contained three domains: 1) Personal data; 2) COVID-19 positive rate and symptoms/signs presumably related to the coronavirus; 3) Working conditions and PPE adopted after the outbreak. Countries' data were grouped by the Country Positive Rate (CPR) during the survey period and by Gross-National-Income per capita. An ordinal multinomial logistic regression model was carried out with COVID-19 self-reported rate referred by dental professionals as dependent variable to assess the association with questionnaire items. Results: A total of 52,491 questionnaires were returned with a male/female ratio of 0.63. Out of the total respondents, 7,859 dental professionals (15%) reported symptoms/signs compatible with COVID-19. More than half of the sample (n = 27,818; 53%) stated to use FFP2/N95 masks, while 21,558 (41.07%) used eye protection. In the bivariate analysis, CPR and N95/FFP2 were significantly associated (OR = 1.80 95% =5.20 95% 95% CI = 1.60/2.82 and OR CI = 1.44/18.80, respectively), while Gross-National-Income was not statistically associated with CPR (OR = 1.09 CI = 0.97/1.60). The same significant associations were observed in the multivariate analysis. Conclusions: Oral health service provision has not been significantly affected by COVID-19, although access to routine dental care was reduced due to country-specific temporary lockdown periods. While the dental profession has been identified at high-risk, the reported rates of COVID-19 for dental professionals were not significantly different to those reported for the general population in each country. These findings may help to better plan oral health care for future pandemic events
A broadband thermal emission spectrum of the ultra-hot Jupiter WASP-18b
Close-in giant exoplanets with temperatures greater than 2,000 K (''ultra-hot
Jupiters'') have been the subject of extensive efforts to determine their
atmospheric properties using thermal emission measurements from the Hubble and
Spitzer Space Telescopes. However, previous studies have yielded inconsistent
results because the small sizes of the spectral features and the limited
information content of the data resulted in high sensitivity to the varying
assumptions made in the treatment of instrument systematics and the atmospheric
retrieval analysis. Here we present a dayside thermal emission spectrum of the
ultra-hot Jupiter WASP-18b obtained with the NIRISS instrument on JWST. The
data span 0.85 to 2.85 m in wavelength at an average resolving power of
400 and exhibit minimal systematics. The spectrum shows three water emission
features (at 6 confidence) and evidence for optical opacity,
possibly due to H, TiO, and VO (combined significance of 3.8).
Models that fit the data require a thermal inversion, molecular dissociation as
predicted by chemical equilibrium, a solar heavy element abundance
(''metallicity'', M/H = 1.03 solar), and a
carbon-to-oxygen (C/O) ratio less than unity. The data also yield a dayside
brightness temperature map, which shows a peak in temperature near the
sub-stellar point that decreases steeply and symmetrically with longitude
toward the terminators.Comment: JWST ERS bright star observations. Uploaded to inform JWST Cycle 2
proposals. Manuscript under review. 50 pages, 14 figures, 2 table
Early Release Science of the exoplanet WASP-39b with JWST NIRISS
Transmission spectroscopy provides insight into the atmospheric properties
and consequently the formation history, physics, and chemistry of transiting
exoplanets. However, obtaining precise inferences of atmospheric properties
from transmission spectra requires simultaneously measuring the strength and
shape of multiple spectral absorption features from a wide range of chemical
species. This has been challenging given the precision and wavelength coverage
of previous observatories. Here, we present the transmission spectrum of the
Saturn-mass exoplanet WASP-39b obtained using the SOSS mode of the NIRISS
instrument on the JWST. This spectrum spans m in wavelength and
reveals multiple water absorption bands, the potassium resonance doublet, as
well as signatures of clouds. The precision and broad wavelength coverage of
NIRISS-SOSS allows us to break model degeneracies between cloud properties and
the atmospheric composition of WASP-39b, favoring a heavy element enhancement
("metallicity") of the solar value, a sub-solar
carbon-to-oxygen (C/O) ratio, and a solar-to-super-solar potassium-to-oxygen
(K/O) ratio. The observations are best explained by wavelength-dependent,
non-gray clouds with inhomogeneous coverage of the planet's terminator.Comment: 48 pages, 12 figures, 2 tables. Under review at Natur
Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector
A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements
Finishing the euchromatic sequence of the human genome
The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
A História da Alimentação: balizas historiográficas
Os M. pretenderam traçar um quadro da História da Alimentação, não como um novo ramo epistemológico da disciplina, mas como um campo em desenvolvimento de práticas e atividades especializadas, incluindo pesquisa, formação, publicações, associações, encontros acadêmicos, etc. Um breve relato das condições em que tal campo se assentou faz-se preceder de um panorama dos estudos de alimentação e temas correia tos, em geral, segundo cinco abardagens Ia biológica, a econômica, a social, a cultural e a filosófica!, assim como da identificação das contribuições mais relevantes da Antropologia, Arqueologia, Sociologia e Geografia. A fim de comentar a multiforme e volumosa bibliografia histórica, foi ela organizada segundo critérios morfológicos. A seguir, alguns tópicos importantes mereceram tratamento à parte: a fome, o alimento e o domínio religioso, as descobertas européias e a difusão mundial de alimentos, gosto e gastronomia. O artigo se encerra com um rápido balanço crítico da historiografia brasileira sobre o tema
- …