44 research outputs found

    Elevated plasma phenylalanine in severe malaria and implications for pathophysiology of neurological complications.

    Get PDF
    Journal ArticleCerebral malaria is associated with decreased production of nitric oxide and decreased levels of its precursor, l-arginine. Abnormal amino acid metabolism may thus be an important factor in malaria pathogenesis. We sought to determine if other amino acid abnormalities are associated with disease severity in falciparum malaria. Subjects were enrolled in Dar es Salaam, Tanzania (children) (n = 126), and Papua, Indonesia (adults) (n = 156), in two separate studies. Plasma samples were collected from subjects with WHO-defined cerebral malaria (children), all forms of severe malaria (adults), and uncomplicated malaria (children and adults). Healthy children and adults without fever or illness served as controls. Plasma amino acids were measured using reverse-phase high-performance liquid chromatography with fluorescence detection. Several plasma amino acids were significantly lower in the clinical malaria groups than in healthy controls. Despite the differences, phenylalanine was the only amino acid with mean levels outside the normal range (40 to 84 microM) and was markedly elevated in children with cerebral malaria (median [95% confidence interval], 163 [134 to 193] microM; P < 0.0001) and adults with all forms of severe malaria (median [95% confidence interval], 129 [111 to 155] microM; P < 0.0001). In adults who survived severe malaria, phenylalanine levels returned to normal, with clinical improvement (P = 0.0002). Maintenance of plasma phenylalanine homeostasis is disrupted in severe malaria, leading to significant hyperphenylalaninemia. This is likely a result of an acquired abnormality in the function of the liver enzyme phenylalanine hydroxylase. Determination of the mechanism of this abnormality may contribute to the understanding of neurological complications in malaria

    Spinal fluid IgG antibodies from patients with demyelinating diseases bind multiple sclerosis-associated bacteria

    Get PDF
    ABSTRACT: A panel of 10 IgG enzyme-linked immunosorbent assays (ELISAs) were developed for the detection of anti-microbial immune responses in the cerebrospinal fluid (CSF) of patients with demyelinating diseases (DD). The anti-microbial ELISA assays follow on prior human brain tissue RNA sequencing studies that established multiple sclerosis (MS) microbial candidates. Lysates included in the ELISA panel were derived from Akkermansia muciniphila, Atopobium vaginae, Bacteroides fragilis, Lactobacillus paracasei, Odoribacter splanchnicus, Pseudomonas aeruginosa, Cutibacterium (Propionibacterium) acnes, Fusobacterium necrophorum, Porphyromonas gingivalis, and Streptococcus mutans. CSF responses from patients with demyelinating diseases (DD, N = 14) were compared to those with other neurological diseases (OND, N = 8) and controls (N = 13). Commercial positive and negative control CSF specimens were run with each assay. ELISA index values were derived for each specimen against each of the 10 bacterial lysates. CSF reactivity was significantly higher in the DD group compared to the controls against Akkermansia, Atopobium, Bacteroides, Lactobacillus, Odoribacter, and Fusobacterium. Four of the 11 tested DD group subjects had elevated antibody indexes against at least one of the 10 bacterial species, suggesting intrathecal antibody production. This CSF serological study supports the hypothesis that several of the previously identified MS candidate microbes contribute to demyelination in some patients. KEY MESSAGES: A panel of 10 IgG enzyme-linked immunosorbent assays (ELISAs) were developed for the detection of anti-microbial immune responses in the cerebrospinal fluid (CSF) of patients with demyelinating diseases, including multiple sclerosis and acute disseminated encephalomyelitis. CSF reactivity was significantly higher in the demyelination group compared to the controls against the bacteria Akkermansia, Atopobium, Bacteroides, Lactobacillus, Odoribacter, and Fusobacterium. Several of the demyelination subjects had elevated antibody indexes against at least one of the 10 antigens, suggesting at least limited intrathecal production of anti-bacterial antibodies. This CSF serological study supports the hypothesis that several of the previously identified MS candidate microbes contribute to demyelination in some patients. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00109-021-02085-z

    Safety Profile of L-Arginine Infusion in Moderately Severe Falciparum Malaria

    Get PDF
    BACKGROUND: L-arginine infusion improves endothelial function in malaria but its safety profile has not been described in detail. We assessed clinical symptoms, hemodynamic status and biochemical parameters before and after a single L-arginine infusion in adults with moderately severe malaria. METHODOLOGY AND FINDINGS: In an ascending dose study, adjunctive intravenous L-arginine hydrochloride was infused over 30 minutes in doses of 3 g, 6 g and 12 g to three separate groups of 10 adults hospitalized with moderately severe Plasmodium falciparum malaria in addition to standard quinine therapy. Symptoms, vital signs and selected biochemical measurements were assessed before, during, and for 24 hours after infusion. No new or worsening symptoms developed apart from mild discomfort at the intravenous cannula site in two patients. There was a dose-response relationship between increasing mg/kg dose and the maximum decrease in systolic (Οβ€Š=β€Š0.463; Spearman's, pβ€Š=β€Š0.02) and diastolic blood pressure (rβ€Š=β€Š0.42; Pearson's, pβ€Š=β€Š0.02), and with the maximum increment in blood potassium (rβ€Š=β€Š0.70, p<0.001) and maximum decrement in bicarbonate concentrations (rβ€Š=β€Š0.53, pβ€Š=β€Š0.003) and pH (rβ€Š=β€Š0.48, pβ€Š=β€Š0.007). At the highest dose (12 g), changes in blood pressure and electrolytes were not clinically significant, with a mean maximum decrease in mean arterial blood pressure of 6 mmHg (range: 0–11; p<0.001), mean maximal increase in potassium of 0.5 mmol/L (range 0.2–0.7 mmol/L; p<0.001), and mean maximal decrease in bicarbonate of 3 mEq/L (range 1–7; p<0.01) without a significant change in pH. There was no significant dose-response relationship with blood phosphate, lactate, anion gap and glucose concentrations. All patients had an uncomplicated clinical recovery. CONCLUSIONS/SIGNIFICANCE: Infusion of up to 12g of intravenous L-arginine hydrochloride over 30 minutes is well tolerated in adults with moderately severe malaria, with no clinically important changes in hemodynamic or biochemical status. Trials of adjunctive L-arginine can be extended to phase 2 studies in severe malaria. TRIAL REGISTRATION: ClinicalTrials.gov NCT0014736

    Plasma Plasmodium falciparum Histidine-Rich Protein-2 Concentrations Are Associated with Malaria Severity and Mortality in Tanzanian Children

    Get PDF
    Plasma Plasmodium falciparum histidine-rich protein-2 (PfHRP-2) concentrations, a measure of parasite biomass, have been correlated with malaria severity in adults, but not yet in children. We measured plasma PfHRP-2 in Tanzanian children with uncomplicated (nβ€Š=β€Š61) and cerebral malaria (nβ€Š=β€Š45; 7 deaths). Median plasma PfHRP-2 concentrations were higher in cerebral malaria (1008 [IQR 342–2572] ng/mL) than in uncomplicated malaria (465 [IQR 36–1426] ng/mL; pβ€Š=β€Š0.017). In cerebral malaria, natural log plasma PfHRP-2 was associated with coma depth (rβ€Š=β€Šβˆ’0.42; pβ€Š=β€Š0.006) and mortality (OR: 3.0 [95% CI 1.03–8.76]; pβ€Š=β€Š0.04). In this relatively small cohort study in a mesoendemic transmission area of Africa, plasma PfHRP-2 was associated with pediatric malaria severity and mortality. Further studies among children in areas of Africa with higher malaria transmission and among children with different clinical manifestations of severe malaria will help determine the wider utility of quantitative PfHRP-2 as a measure of parasite biomass and prognosis in sub-Saharan Africa

    Impaired nitric oxide bioavailability and l-arginine–reversible endothelial dysfunction in adults with falciparum malaria

    Get PDF
    Severe falciparum malaria (SM) is associated with tissue ischemia related to cytoadherence of parasitized erythrocytes to microvascular endothelium and reduced levels of NO and its precursor, l-arginine. Endothelial function has not been characterized in SM but can be improved by l-arginine in cardiovascular disease. In an observational study in Indonesia, we measured endothelial function using reactive hyperemia–peripheral arterial tonometry (RH-PAT) in 51 adults with SM, 48 patients with moderately severe falciparum malaria (MSM), and 48 controls. The mean RH-PAT index was lower in SM (1.41; 95% confidence interval [CI] = 1.33–1.47) than in MSM (1.82; 95% CI = 1.7–2.02) and controls (1.93; 95% CI = 1.8–2.06; P < 0.0001). Endothelial dysfunction was associated with elevated blood lactate and measures of hemolysis. Exhaled NO was also lower in SM relative to MSM and controls. In an ascending dose study of intravenous l-arginine in 30 more patients with MSM, l-arginine increased the RH-PAT index by 19% (95% CI = 6–34; P = 0.006) and exhaled NO by 55% (95% CI = 32–73; P < 0.0001) without important side effects. Hypoargininemia and hemolysis likely reduce NO bioavailability. Endothelial dysfunction in malaria is nearly universal in severe disease, is reversible with l-arginine, and likely contributes to its pathogenesis. Clinical trials in SM of adjunctive agents to improve endothelial NO bioavailability, including l-arginine, are warranted

    Influenza, Winter Olympiad, 2002

    Get PDF
    Prospective surveillance for influenza was performed during the 2002 Salt Lake City Winter Olympics. Oseltamivir was administered to patients with influenzalike illness and confirmed influenza, while their close contacts were given oseltamivir prophylactically. Influenza A/B was diagnosed in 36 of 188 patients, including 13 athletes. Prompt management limited the spread of this outbreak

    Increased Asymmetric Dimethylarginine in Severe Falciparum Malaria: Association with Impaired Nitric Oxide Bioavailability and Fatal Outcome

    Get PDF
    Asymmetrical dimethylarginine (ADMA), an endogenous inhibitor of nitric oxide synthase (NOS), is a predictor of mortality in critical illness. Severe malaria (SM) is associated with decreased NO bioavailability, but the contribution of ADMA to the pathogenesis of impaired NO bioavailability and adverse outcomes in malaria is unknown. In adults with and without falciparum malaria, we tested the hypotheses that plasma ADMA would be: 1) increased in proportion to disease severity, 2) associated with impaired vascular and pulmonary NO bioavailability and 3) independently associated with increased mortality. We assessed plasma dimethylarginines, exhaled NO concentrations and endothelial function in 49 patients with SM, 78 with moderately severe malaria (MSM) and 19 healthy controls (HC). Repeat ADMA and endothelial function measurements were performed in patients with SM. Multivariable regression was used to assess the effect of ADMA on mortality and NO bioavailability. Plasma ADMA was increased in SM patients (0.85 Β΅M; 95% CI 0.74–0.96) compared to those with MSM (0.54 Β΅M; 95%CI 0.5–0.56) and HCs (0.64 Β΅M; 95%CI 0.58–0.70; p<0.001). ADMA was an independent predictor of mortality in SM patients with each micromolar elevation increasing the odds of death 18 fold (95% CI 2.0–181; pβ€Š=β€Š0.01). ADMA was independently associated with decreased exhaled NO (rsβ€Š=β€Šβˆ’0.31) and endothelial function (rsβ€Š=β€Šβˆ’0.32) in all malaria patients, and with reduced exhaled NO (rsβ€Š=β€Šβˆ’0.72) in those with SM. ADMA is increased in SM and associated with decreased vascular and pulmonary NO bioavailability. Inhibition of NOS by ADMA may contribute to increased mortality in severe malaria

    Subcutaneous Eikenella corrodens, Actinomyces sp., and Ξ±-Hemolytic Streptococcus Abscess of the Thigh following a Vitamin B12 Injection

    No full text
    This case report describes a 38-year-old female presenting with a thigh abscess caused by Eikenella corrodens, Actinomyces sp., and Ξ±-hemolytic Streptococcus following an intramuscular vitamin B12 injection administered at an outpatient clinic. After failure to improve clinically with intravenous daptomycin and after visualization of the abscess with gas bubbles on CT scan, she was taken to the operating room for three separate surgical irrigation and debridement procedures. Treatment also included intravenous ampicillin/sulbactam followed by oral amoxicillin/clavulanic acid therapy. She remained symptom free and without infection at nine months following hospitalization. It was suspected that poor hygiene played a role in the infection, but a definitive cause was not identified
    corecore