20,358 research outputs found

    A simple and surprisingly accurate approach to the chemical bond obtained from dimensional scaling

    Get PDF
    We present a new dimensional scaling transformation of the Schrodinger equation for the two electron bond. This yields, for the first time, a good description of the two electron bond via D-scaling. There also emerges, in the large-D limit, an intuitively appealing semiclassical picture, akin to a molecular model proposed by Niels Bohr in 1913. In this limit, the electrons are confined to specific orbits in the scaled space, yet the uncertainty principle is maintained because the scaling leaves invariant the position-momentum commutator. A first-order perturbation correction, proportional to 1/D, substantially improves the agreement with the exact ground state potential energy curve. The present treatment is very simple mathematically, yet provides a strikingly accurate description of the potential energy curves for the lowest singlet, triplet and excited states of H_2. We find the modified D-scaling method also gives good results for other molecules. It can be combined advantageously with Hartree-Fock and other conventional methods.Comment: 4 pages, 5 figures, to appear in Phys. Rev. Letter

    Topological properties of Berry's phase

    Full text link
    By using a second quantized formulation of level crossing, which does not assume adiabatic approximation, a convenient formula for geometric terms including off-diagonal terms is derived. The analysis of geometric phases is reduced to a simple diagonalization of the Hamiltonian in the present formulation. If one diagonalizes the geometric terms in the infinitesimal neighborhood of level crossing, the geometric phases become trivial for any finite time interval TT. The topological interpretation of Berry's phase such as the topological proof of phase-change rule thus fails in the practical Born-Oppenheimer approximation, where a large but finite ratio of two time scales is involved.Comment: 9 pages. A new reference was added, and the abstract and the presentation in the body of the paper have been expanded and made more precis

    Avoided intersections of nodal lines

    Full text link
    We consider real eigen-functions of the Schr\"odinger operator in 2-d. The nodal lines of separable systems form a regular grid, and the number of nodal crossings equals the number of nodal domains. In contrast, for wave functions of non integrable systems nodal intersections are rare, and for random waves, the expected number of intersections in any finite area vanishes. However, nodal lines display characteristic avoided crossings which we study in the present work. We define a measure for the avoidance range and compute its distribution for the random waves ensemble. We show that the avoidance range distribution of wave functions of chaotic systems follow the expected random wave distributions, whereas for wave functions of classically integrable but quantum non-separable wave functions, the distribution is quite different. Thus, the study of the avoidance distribution provides more support to the conjecture that nodal structures of chaotic systems are reproduced by the predictions of the random waves ensemble.Comment: 12 pages, 4 figure

    Persistent Currents in Quantum Chaotic Systems

    Full text link
    The persistent current of ballistic chaotic billiards is considered with the help of the Gutzwiller trace formula. We derive the semiclassical formula of a typical persistent current ItypI^{typ} for a single billiard and an average persistent current for an ensemble of billiards at finite temperature. These formulas are used to show that the persistent current for chaotic billiards is much smaller than that for integrable ones. The persistent currents in the ballistic regime therefore become an experimental tool to search for the quantum signature of classical chaotic and regular dynamics.Comment: 4 pages (RevTex), to appear in Phys. Rev. B, No.59, 12256-12259 (1999

    Countering Quantum Noise with Supplementary Classical Information

    Full text link
    We consider situations in which i) Alice wishes to send quantum information to Bob via a noisy quantum channel, ii) Alice has a classical description of the states she wishes to send and iii) Alice can make use of a finite amount of noiseless classical information. After setting up the problem in general, we focus attention on one specific scenario in which Alice sends a known qubit down a depolarizing channel along with a noiseless cbit. We describe a protocol which we conjecture is optimal and calculate the average fidelity obtained. A surprising amount of structure is revealed even for this simple case which suggests that relationships between quantum and classical information could in general be very intricate.Comment: RevTeX, 5 pages, 2 figures Typo in reference 9 correcte

    The Elliptic Billiard: Subtleties of Separability

    Full text link
    Some of the subtleties of the integrability of the elliptic quantum billiard are discussed. A well known classical constant of the motion has in the quantum case an ill-defined commutator with the Hamiltonian. It is shown how this problem can be solved. A geometric picture is given revealing why levels of a separable system cross. It is shown that the repulsions found by Ayant and Arvieu are computational effects and that the method used by Traiber et al. is related to the present picture which explains the crossings they find. An asymptotic formula for the energy-levels is derived and it is found that the statistical quantities of the spectrum P(s) and \Delta(L) have the form expected for an integrable system.Comment: 10 pages, LaTeX, 3 Figures (postscript). Submitted to European Journal of Physic

    Berry's conjecture and information theory

    Full text link
    It is shown that, by applying a principle of information theory, one obtains Berry's conjecture regarding the high-lying quantal energy eigenstates of classically chaotic systems.Comment: 8 pages, no figure

    A generalized Pancharatnam geometric phase formula for three level systems

    Get PDF
    We describe a generalisation of the well known Pancharatnam geometric phase formula for two level systems, to evolution of a three-level system along a geodesic triangle in state space. This is achieved by using a recently developed generalisation of the Poincare sphere method, to represent pure states of a three-level quantum system in a convenient geometrical manner. The construction depends on the properties of the group SU(3)\/ and its generators in the defining representation, and uses geometrical objects and operations in an eight dimensional real Euclidean space. Implications for an n-level system are also discussed.Comment: 12 pages, Revtex, one figure, epsf used for figure insertio

    Classical versus quantum dynamics of the atomic Josephson junction

    Full text link
    We compare the classical (mean-field) dynamics with the quantum dynamics of atomic Bose-Einstein condensates in double-well potentials. The quantum dynamics are computed using a simple scheme based upon the Raman-Nath equations. Two different methods for exciting a non-equilbrium state are considered: an asymmetry between the wells which is suddenly removed, and a periodic time oscillating asymmetry. The first method generates wave packets that lead to collapses and revivals of the expectation values of the macroscopic variables, and we calculate the time scale for these revivals. The second method permits the excitation of a single energy eigenstate of the many-particle system, including Schroedinger cat states. We also discuss a band theory interpretation of the energy level structure of an asymmetric double-well, thereby identifying analogies to Bloch oscillations and Bragg resonances. Both the Bloch and Bragg dynamics are purely quantum and are not contained in the mean-field treatment.Comment: 31 pages, 14 figure

    Chaos and Quantum Thermalization

    Full text link
    We show that a bounded, isolated quantum system of many particles in a specific initial state will approach thermal equilibrium if the energy eigenfunctions which are superposed to form that state obey {\it Berry's conjecture}. Berry's conjecture is expected to hold only if the corresponding classical system is chaotic, and essentially states that the energy eigenfunctions behave as if they were gaussian random variables. We review the existing evidence, and show that previously neglected effects substantially strengthen the case for Berry's conjecture. We study a rarefied hard-sphere gas as an explicit example of a many-body system which is known to be classically chaotic, and show that an energy eigenstate which obeys Berry's conjecture predicts a Maxwell--Boltzmann, Bose--Einstein, or Fermi--Dirac distribution for the momentum of each constituent particle, depending on whether the wave functions are taken to be nonsymmetric, completely symmetric, or completely antisymmetric functions of the positions of the particles. We call this phenomenon {\it eigenstate thermalization}. We show that a generic initial state will approach thermal equilibrium at least as fast as O(/Δ)t1O(\hbar/\Delta)t^{-1}, where Δ\Delta is the uncertainty in the total energy of the gas. This result holds for an individual initial state; in contrast to the classical theory, no averaging over an ensemble of initial states is needed. We argue that these results constitute a new foundation for quantum statistical mechanics.Comment: 28 pages in Plain TeX plus 2 uuencoded PS figures (included); minor corrections only, this version will be published in Phys. Rev. E; UCSB-TH-94-1
    corecore