6,416 research outputs found

    The effect of Holstein-Friesian genotype and feeding system on selected performance parameters of dairy cows on grass-based systems of milk production in Ireland

    Get PDF
    End of project reportThe overall objective of this project was to assess, the effect of strain of Holstein-Friesian dairy cow, pasture-based feed system (FS) and their interaction on animal performance in terms of milk productivity and lactation profile, body weight (BW), body condition score (BCS), feed intake and energy balance (EB), reproductive performance and overall economic profitability

    Core Concepts for Talking to Students

    Get PDF

    Thinking about Rules and Strategies

    Get PDF

    Aberration-like cusped focusing in the post-paraxial Talbot effect

    Full text link
    We present an analysis of self-imaging in a regime beyond the paraxial, where deviation from simple paraxial propagation causes apparent self-imaging aberrations. The resulting structures are examples of aberration without rays and are described analytically using post-paraxial theory. They are shown to relate to, but surprisingly do not precisely replicate, a standard integral representation of a diffraction cusp. Beyond the Talbot effect, this result is significant as it illustrates that the effect of aberration -- as manifested in the replacement of a perfect focus with a cusp-like pattern -- can occur as a consequence of improving the paraxial approximation, rather than due to imperfections in the optical system.Comment: 8 pages, 3 figures, IoP styl

    Otolith Microchemical Fingerprints of Age-0 Red Snapper, Lutjanus campechanus, from the Northern Gulf of Mexico

    Get PDF
    Red snapper, Lutjanus campechanus, in the northern Gulf of Mexico (Gulf) are believed to constitute a single stock. However, tagging and genetics studies suggest there is little mixing between populations of red snapper in the northern Gulf, and little is known about mixing rates of adult fish. The long-term goal of our work is to determine if age-0 red snapper from different nursery areas have unique microchemical fingerprints in their sagittal otoliths, and if so, can the microchemical fingerprints at the core of adult otoliths be used to determine retrospectively nursery area of origin. Ultimately, we hope to use the microchemical fingerprints at the core of adult snapper otoliths to estimate adults\u27 mixing rates and movement patterns. In this study, the objective was to determine if age-0 red snapper collected from different northern Gulf nursery areas in summer and fall 1995 did contain unique microchemical fingerprints. Sagittal otoliths of age-0 red snapper collected off the coasts of Alabama/Mississippi, Louisiana, and Texas were analyzed using inductively coupled plasma atomic emission spectrometry (ICP-AES). Twelve elements in the sagittae of age-0 snapper were analyzed with ICP-AES. Of these, eight were put into a stepwise discriminant function analysis with the best-fitted model including Mg, Se, As, Fe, and AI, entered in that order (MANOVA, P \u3c 0.001). Cross-validated classification accuracies were 92% for Texas fish, 91% for Louisiana fish, and 92% for Alabama/Mississippi fish. Therefore, it appears that otolith microchemistry can be used to infer nursery area of age-0 red snapper. Future work will focus on (1) establishing the temporal stability of age-0 red snapper otolith microchemical fingerprints and (2) inclusion of analyses of age-structured samples from adult red snapper otolith cores to estimate their nursery area of origin and mixing rates
    • …
    corecore