1,696 research outputs found

    The publication of Cicero's Pro Roscio Amerino

    Get PDF

    The criminals in Virgil's Tartarus: Contemporary allusions in Aeneid 6.621-4

    Get PDF

    Gulielmius and the Erfurtensis of Cicero: New readings for Pro Sulla

    Get PDF

    Form and function

    Get PDF

    Adaptive tracking of a time-varying field with a quantum sensor

    Full text link
    Sensors based on single spins can enable magnetic field detection with very high sensitivity and spatial resolution. Previous work has concentrated on sensing of a constant magnetic field or a periodic signal. Here, we instead investigate the problem of estimating a field with non-periodic variation described by a Wiener process. We propose and study, by numerical simulations, an adaptive tracking protocol based on Bayesian estimation. The tracking protocol updates the probability distribution for the magnetic field, based on measurement outcomes, and adapts the choice of sensing time and phase in real time. By taking the statistical properties of the signal into account, our protocol strongly reduces the required measurement time. This leads to a reduction of the error in the estimation of a time-varying signal by up to a factor 4 compared to protocols that do not take this information into account.Comment: 10 pages, 6 figure

    Loss-resistant unambiguous phase measurement

    Full text link
    Entangled multi-photon states have the potential to provide improved measurement accuracy, but are sensitive to photon loss. It is possible to calculate ideal loss-resistant states that maximize the Fisher information, but it is unclear how these could be experimentally generated. Here we propose a set of states that can be obtained by processing the output from parametric down-conversion. Although these states are not optimal, they provide performance very close to that of optimal states for a range of parameters. Moreover, we show how to use sequences of such states in order to obtain an unambiguous phase measurement that beats the standard quantum limit. We consider the optimization of parameters in order to minimize the final phase variance, and find that the optimum parameters are different from those that maximize the Fisher information.Comment: 8 pages, 7 figures, comments are welcom
    • …
    corecore