4 research outputs found

    <i>Striga hermonthica</i> Suicidal Germination Activity of Potent Strigolactone Analogs: Evaluation from Laboratory Bioassays to Field Trials

    No full text
    The obligate hemiparasite Striga hermonthica is one of the major global biotic threats to agriculture in sub-Saharan Africa, causing severe yield losses of cereals. The germination of Striga seeds relies on host-released signaling molecules, mainly strigolactones (SLs). This dependency opens up the possibility of deploying SL analogs as “suicidal germination agents” to reduce the accumulated seed bank of Striga in infested soils. Although several synthetic SL analogs have been developed for this purpose, the utility of these compounds in realizing the suicidal germination strategy for combating Striga is still largely unknown. Here, we evaluated the efficacy of three potent SL analogs (MP3, MP16, and Nijmegen-1) under laboratory, greenhouse, and farmer’s field conditions. All investigated analogs showed around a 50% Striga germination rate, equivalent to a 50% reduction in infestation, which was comparable to the standard SL analog GR24. Importantly, MP16 had the maximum reduction of Striga emergence (97%) in the greenhouse experiment, while Nijmegen-1 appeared to be a promising candidate under field conditions, with a 43% and 60% reduction of Striga emergence in pearl millet and sorghum fields, respectively. These findings confirm that the selected SL analogs appear to make promising candidates as simple suicidal agents both under laboratory and real African field conditions, which may support us to improve suicidal germination technology to deplete the Striga seed bank in African agriculture

    Zaxinone mimics (MiZax) efficiently promote growth and production of potato and strawberry plants under desert climate conditions

    No full text
    Abstract Climate changes and the rapid expanding human population have become critical concerns for global food security. One of the promising solutions is the employment of plant growth regulators (PGRs) for increasing crop yield and overcoming adverse growth conditions, such as desert climate. Recently, the apocarotenoid zaxinone and its two mimics (MiZax3 and MiZax5) have shown a promising growth-promoting activity in cereals and vegetable crops under greenhouse and field conditions. Herein, we further investigated the effect of MiZax3 and MiZax5, at different concentrations (5 and 10 µM in 2021; 2.5 and 5 µM in 2022), on the growth and yield of the two valuable vegetable crops, potato and strawberry, in the Kingdom of Saudi of Arabia. Application of both MiZax significantly increased plant agronomic traits, yield components and total yield, in five independent field trials from 2021 to 2022. Remarkably, the amount of applied MiZax was far less than humic acid, a widely applied commercial compound used here for comparison. Hence, our results indicate that MiZax are very promising PGRs that can be applied to promote the growth and yield of vegetable crops even under desert conditions and at relatively low concentrations

    A New Formulation for Strigolactone Suicidal Germination Agents, towards Successful <i>Striga</i> Management

    No full text
    Striga hermonthica, a member of the Orobanchaceae family, is an obligate root parasite of staple cereal crops, which poses a tremendous threat to food security, contributing to malnutrition and poverty in many African countries. Depleting Striga seed reservoirs from infested soils is one of the crucial approaches to minimize subterranean damage to crops. The dependency of Striga germination on the host-released strigolactones (SLs) has prompted the development of the “Suicidal Germination” strategy to reduce the accumulated seed bank of Striga. The success of aforementioned strategy depends not only on the activity of the applied SL analogs, but also requires suitable application protocol with simple, efficient, and handy formulation for rain-fed African agriculture. Here, we developed a new formulation “Emulsifiable Concentration (EC)” for the two previously field-assessed SL analogs Methyl phenlactonoate 3 (MP3) and Nijmegen-1. The new EC formulation was evaluated for biological activities under lab, greenhouse, mini-field, and field conditions in comparison to the previously used Atlas G-1086 formulation. The EC formulation of SL analogs showed better activities on Striga germination with lower EC50 and high stability under Lab conditions. Moreover, EC formulated SL analogs at 1.0 µM concentrations reduced 89–99% Striga emergence in greenhouse. The two EC formulated SL analogs showed also a considerable reduction in Striga emergence in mini-field and field experiments. In conclusion, we have successfully developed a desired formulation for applying SL analogs as suicidal agents for large-scale field application. The encouraging results presented in this study pave the way for integrating the suicidal germination approach in sustainable Striga management strategies for African agriculture
    corecore