729 research outputs found
Probing Extreme-Density Matter with Gravitational Wave Observations of Binary Neutron Star Merger Remnants
We present a proof-of-concept study, based on numerical-relativity
simulations, of how gravitational waves (GWs) from neutron star merger remnants
can probe the nature of matter at extreme densities. Phase transitions and
extra degrees of freedom can emerge at densities beyond those reached during
the inspiral, and typically result in a softening of the equation of state
(EOS). We show that such physical effects change the qualitative dynamics of
the remnant evolution, but they are not identifiable as a signature in the GW
frequency, with the exception of possible black-hole formation effects. The EOS
softening is, instead, encoded in the GW luminosity and phase and is in
principle detectable up to distances of the order of several Mpcs with advanced
detectors and up to hundreds of Mpcs with third generation detectors. Probing
extreme-density matter will require going beyond the current paradigm and
developing a more holistic strategy for modeling and analyzing postmerger GW
signals.Comment: 5 pages, 3 figures. Matches version accepted on ApJ
Black-hole remnants from black-hole-neutron-star mergers
Observations of gravitational waves and their electromagnetic counterparts may soon uncover the existence of coalescing compact binary systems formed by a stellar-mass black hole and a neutron star. These mergers result in a remnant black hole, possibly surrounded by an accretion disk. The mass and spin of the remnant black hole depend on the properties of the coalescing binary. We construct a map from the binary components to the remnant black hole using a sample of numerical-relativity simulations of different mass ratios q, (anti)aligned dimensionless spins of the black hole aBH, and several neutron star equations of state. Given the binary total mass, the mass and spin of the remnant black hole can therefore be determined from the three parameters (q,aBH,Λ), where Λ is the tidal deformability of the neutron star. Our models also incorporate the binary black hole and test-mass limit cases and we discuss a simple extension for generic black-hole spins. We combine the remnant characterization with recent population synthesis simulations for various metallicities of the progenitor stars that generated the binary system. We predict that black-hole-neutron-star mergers produce a population of remnant black holes with masses distributed around 7 M and 9 M. For isotropic spin distributions, nonmassive accretion disks are favored: no bright electromagnetic counterparts are expected in such mergers
Sulforaphane rewires central metabolism to support antioxidant response and achieve glucose homeostasis
Cruciferous-rich diets, particularly broccoli, have been associated with reduced risk of developing cancers of various sites, cardiovascular disease and type-2 diabetes. Sulforaphane (SF), a sulfur-containing broccoli-derived metabolite, has been identified as the major bioactive compound mediating these health benefits. Sulforaphane is a potent dietary activator of the transcription factor Nuclear factor erythroid-like 2 (NRF2), the master regulator of antioxidant cell capacity responsible for inducing cytoprotective genes, but its role in glucose homeostasis remains unclear. In this study, we set to test the hypothesis that SF regulates glucose metabolism and ameliorates glucose overload and its resulting oxidative stress by inducing NRF2 in human hepatoma HepG2 cells. HepG2 cells were exposed to varying glucose concentrations: basal (5.5 mM) and high glucose (25 mM), in the presence of physiological concentrations of SF (10 μM). SF upregulated the expression of glutathione (GSH) biosynthetic genes and significantly increased levels of reduced GSH. Labelled glucose and glutamine experiments to measure metabolic fluxes identified that SF increased intracellular utilisation of glycine and glutamate by redirecting the latter away from the TCA cycle and increased the import of cysteine from the media, likely to support glutathione synthesis. Furthermore, SF altered pathways generating NADPH, the necessary cofactor for oxidoreductase reactions, namely pentose phosphate pathway and 1C-metabolism, leading to the redirection of glucose away from glycolysis and towards PPP and of methionine towards methylation substrates. Finally, transcriptomic and targeted metabolomics LC-MS analysis of NRF2-KD HepG2 cells generated using CRISPR-Cas9 genome editing revealed that the above metabolic effects are mediated through NRF2. These results suggest that the antioxidant properties of cruciferous diets are intricately connected to their metabolic benefits
On the Shear Instability in Relativistic Neutron Stars
We present new results on instabilities in rapidly and differentially
rotating neutron stars. We model the stars in full general relativity and
describe the stellar matter adopting a cold realistic equation of state based
on the unified SLy prescription. We provide evidence that rapidly and
differentially rotating stars that are below the expected threshold for the
dynamical bar-mode instability, beta_c = T/|W| ~ 0.25, do nevertheless develop
a shear instability on a dynamical timescale and for a wide range of values of
beta. This class of instability, which has so far been found only for small
values of beta and with very small growth rates, is therefore more generic than
previously found and potentially more effective in producing strong sources of
gravitational waves. Overall, our findings support the phenomenological
predictions made by Watts, Andersson and Jones on the nature of the low-T/|W|.Comment: 20 pages; accepted to the Classical and Quantum Gravity special issue
for MICRA200
Intermediate behavior of Kerr tails
The numerical investigation of wave propagation in the asymptotic domain of
Kerr spacetime has only recently been possible thanks to the construction of
suitable hyperboloidal coordinates. The asymptotics revealed an apparent puzzle
in the decay rates of scalar fields: the late-time rates seemed to depend on
whether finite distance observers are in the strong field domain or far away
from the rotating black hole, an apparent phenomenon dubbed "splitting". We
discuss far-field "splitting" in the full field and near-horizon "splitting" in
certain projected modes using horizon-penetrating, hyperboloidal coordinates.
For either case we propose an explanation to the cause of the "splitting"
behavior, and we determine uniquely decay rates that previous studies found to
be ambiguous or immeasurable. The far-field "splitting" is explained by
competition between projected modes. The near-horizon "splitting" is due to
excitation of lower multipole modes that back excite the multipole mode for
which "splitting" is observed. In both cases "splitting" is an intermediate
effect, such that asymptotically in time strong field rates are valid at all
finite distances. At any finite time, however, there are three domains with
different decay rates whose boundaries move outwards during evolution. We then
propose a formula for the decay rate of tails that takes into account the
inter--mode excitation effect that we study.Comment: 16 page
Recommended from our members
All-sky search for short gravitational-wave bursts in the second Advanced LIGO and Advanced Virgo run
We present the results of a search for short-duration gravitational-wave transients in the data from the second observing run of Advanced LIGO and Advanced Virgo. We search for gravitational-wave transients with a duration of milliseconds to approximately one second in the 32-4096 Hz frequency band with minimal assumptions about the signal properties, thus targeting a wide variety of sources. We also perform a matched-filter search for gravitational-wave transients from cosmic string cusps for which the waveform is well modeled. The unmodeled search detected gravitational waves from several binary black hole mergers which have been identified by previous analyses. No other significant events have been found by either the unmodeled search or the cosmic string search. We thus present the search sensitivities for a variety of signal waveforms and report upper limits on the source rate density as a function of the characteristic frequency of the signal. These upper limits are a factor of 3 lower than the first observing run, with a 50% detection probability for gravitational-wave emissions with energies of ∼10-9 Mc2 at 153 Hz. For the search dedicated to cosmic string cusps we consider several loop distribution models, and present updated constraints from the same search done in the first observing run
- …