402 research outputs found

    Path Integral Calculations of exchange in solid 4He

    Full text link
    Recently there have been experimental indications that solid 4He might be a supersolid. We discuss the relation of supersolid behavior to ring exchange. The tunnelling frequencies for ring exchanges in quantum solids are calculated using Path Integral Monte Carlo by finding the free energy for making a path that begins with the atoms in one configuration and ends with a permutation of those positions. We find that the exchange frequencies in solid 4He are described by a simple lattice model which does not show supersolid behavior. Thus, the PIMC calculations constrain the mechanism for the supersolid behavior. We also look at the characteristics of very long exchanges needed for macroscopic mass transport

    J1−J2J_1-J_2 quantum Heisenberg antiferromagnet on the triangular lattice: a group symmetry analysis of order by disorder

    Full text link
    On the triangular lattice, for J2/J1J_2/J_1 between 1/81/8 and 11, the classical Heisenberg model with first and second neighbor interactions presents four-sublattice ordered ground-states. Spin-wave calculations of Chubukov and Jolicoeur\cite{cj92} and Korshunov\cite{k93} suggest that quantum fluctuations select amongst these states a colinear two-sublattice order. From theoretical requirements, we develop the full symmetry analysis of the low lying levels of the spin-1/2 Hamiltonian in the hypotheses of either a four or a two-sublattice order. We show on the exact spectra of periodic samples (N=12,16N=12,16 and 2828) how quantum fluctuations select the colinear order from the four-sublattice order.Comment: 15 pages, 4 figures (available upon request), Revte

    Many-body wavefunctions for normal liquid 3^3He

    Full text link
    We present new trial wave-functions which include 3-body correlations into the backflow coordinates and a 4-body symmetric potential. We show that our wavefunctions lower the energy enough to stabilize the ground state energies of normal liquid 3^3He in the unpolarized state at all pressures in agreement with experiment; however, quantitative discrepancies remain. Further, we include strong spin coupling into the Fermi liquid by adapting pairing wave functions. We demonstrate a new, numerically stable method to evaluate pairing functions which is also useful for Path Integrals calculations at low, but non-zero temperatures.Comment: 5 page

    Specific heat of the S=1/2 Heisenberg model on the kagome lattice: high-temperature series expansion analysis

    Full text link
    We compute specific heat of the antiferromagnetic spin-1/2 Heisenberg model on the kagome lattice. We use a recently introduced technique to analyze high-temperature series expansion based on the knowledge of high-temperature series expansions, the total entropy of the system and the low-temperature expected behavior of the specific heat as well as the ground-state energy. In the case of kagome-lattice antiferromagnet, this method predicts a low-temperature peak at T/J<0.1.Comment: 6 pages, 5 color figures (.eps), Revtex 4. Change in version 3: Fig. 5 has been corrected (it now shows data for 3 different ground-state energies). The text is unchanged. v4: corrected an error in the temperature scale of Fig. 5. (text unchanged

    The Magnetic Ordering of the 3d Wigner Crystal

    Full text link
    Using Path Integral Monte Carlo, we have calculated exchange frequencies as electrons undergo ring exchanges of 2, 3 and 4 electrons in a ``clean'' 3d Wigner crystal (bcc lattice) as a function of density. We find pair exchange dominates and estimate the critical temperature for the transition to antiferromagnetic ordering to be roughly 1×10−81 \times 10^{-8}Ry at melting. In contrast to the situation in 2d, the 3d Wigner crystal is different from the solid bcc 3He in that the pair exchange dominates because of the softer interparticle potential. We discuss implications for the magnetic phase diagram of the electron gas

    Spin Liquid in the Multiple-Spin Exchange model on the Triangular lattice: 3He on graphite

    Full text link
    Using exact diagonalizations, we investigate the T=0 phase diagram of the Multi-Spin Exchange (MSE) model on the triangular lattice: we find a transition separating a ferromagnetic phase from a non-magnetic gapped Spin Liquid phase. Systems far enough from the ferromagnetic transition have a metamagnetic behavior with magnetization plateaus at m/m_sat=0 and 1/2. The MSE has been proposed to describe solid 3He films adsorbed onto graphite, thus we compute the MSE heat capacity for parameters in the low density range of the 2nd layer and find a double-peak structure.Comment: Revtex, 4 pages, 4 figures. Accepted to Phys. Rev. Let
    • …
    corecore