26,862 research outputs found
Satellite communication and navigation for mobile users
Efforts made to utilize space technology for solving communication and navigation problems faced by mobile users in earth orientated situations are outlined. Applications include transoceanic airline communications, reliable long range ship-shore communications, emergency communications in regions with rough terrain, and military operations
Large-scale sea surface temperature variability from satellite and shipboard measurements
A series of satellite sea surface temperature intercomparison workshops were conducted under NASA sponsorship at the Jet Propulsion Laboratory. Three different satellite data sets were compared with each other, with routinely collected ship data, and with climatology, for the months of November 1979, December 1981, March 1982, and July 1982. The satellite and ship data were differenced against an accepted climatology to produce anomalies, which in turn were spatially and temporally averaged into two-degree latitude-longitude, one-month bins. Monthly statistics on the satellite and ship bin average temperatures yielded rms differences ranging from 0.58 to 1.37 C, and mean differences ranging from -0.48 to 0.72 C, varying substantially from month to month, and sensor to sensor
Hand-printed input for on-line systems
Recognition program for handwritten information in real time computer operatio
Commutating brushes tested in dc motors in dry argon atmospheres
Test apparatus, procedures, and results are given for dc-motor brushes operating in dry argon. Minimum concentrations of argon impurities are also determined
Auroral rocket experiment 2 Final report
Detecting fluxes of energetic neutral hydrogen atoms in interplanetary medium by auroral rocket flight
A model for a broad, disordered transition between the solar wind and the magnetosphere
Interaction of solar wind with magnetosphere and existence of electron distribution equilibrium in trapped plasma sheat
Deriving Boltzmann Equations from Kadanoff-Baym Equations in Curved Space-Time
To calculate the baryon asymmetry in the baryogenesis via leptogenesis
scenario one usually uses Boltzmann equations with transition amplitudes
computed in vacuum. However, the hot and dense medium and, potentially, the
expansion of the universe can affect the collision terms and hence the
generated asymmetry. In this paper we derive the Boltzmann equation in the
curved space-time from (first-principle) Kadanoff-Baym equations. As one
expects from general considerations, the derived equations are covariant
generalizations of the corresponding equations in Minkowski space-time. We find
that, after the necessary approximations have been performed, only the
left-hand side of the Boltzmann equation depends on the space-time metric. The
amplitudes in the collision term on the right--hand side are independent of the
metric, which justifies earlier calculations where this has been assumed
implicitly. At tree level, the matrix elements coincide with those computed in
vacuum. However, the loop contributions involve additional integrals over the
the distribution function.Comment: 14 pages, 5 figures, extended discussion of the constraint equations
and the solution for the spectral functio
- …