16,451 research outputs found

    A Foundation of Programming a Multi-Tape Quantum Turing machine

    Get PDF
    The notion of quantum Turing machines is a basis of quantum complexity theory. We discuss a general model of multi-tape, multi-head Quantum Turing machines with multi final states that also allow tape heads to stay still.Comment: A twelve page version is to appear in the Proceedings of the 24th International Symposium on Mathematical Foundations of Computer Science in September, 1999. LNC

    Fast quantum algorithm for numerical gradient estimation

    Full text link
    Given a blackbox for f, a smooth real scalar function of d real variables, one wants to estimate the gradient of f at a given point with n bits of precision. On a classical computer this requires a minimum of d+1 blackbox queries, whereas on a quantum computer it requires only one query regardless of d. The number of bits of precision to which f must be evaluated matches the classical requirement in the limit of large n.Comment: additional references and minor clarifications and corrections to version

    On the role of entanglement in quantum computational speed-up

    Get PDF
    For any quantum algorithm operating on pure states we prove that the presence of multi-partite entanglement, with a number of parties that increases unboundedly with input size, is necessary if the quantum algorithm is to offer an exponential speed-up over classical computation. Furthermore we prove that the algorithm can be classically efficiently simulated to within a prescribed tolerance \eta even if a suitably small amount of global entanglement (depending on \eta) is present. We explicitly identify the occurrence of increasing multi-partite entanglement in Shor's algorithm. Our results do not apply to quantum algorithms operating on mixed states in general and we discuss the suggestion that an exponential computational speed-up might be possible with mixed states in the total absence of entanglement. Finally, despite the essential role of entanglement for pure state algorithms, we argue that it is nevertheless misleading to view entanglement as a key resource for quantum computational power.Comment: Main proofs simplified. A few further explanatory remarks added. 22 pages, plain late

    Third-order cosmological perturbations of zero-pressure multi-component fluids: Pure general relativistic nonlinear effects

    Full text link
    Present expansion stage of the universe is believed to be mainly governed by the cosmological constant, collisionless dark matter and baryonic matter. The latter two components are often modeled as zero-pressure fluids. In our previous work we have shown that to the second-order cosmological perturbations, the relativistic equations of the zero-pressure, irrotational, multi-component fluids in a spatially near flat background effectively coincide with the Newtonian equations. As the Newtonian equations only have quadratic order nonlinearity, it is practically interesting to derive the potential third-order perturbation terms in general relativistic treatment which correspond to pure general relativistic corrections. Here, we present pure general relativistic correction terms appearing in the third-order perturbations of the multi-component zero-pressure fluids. We show that, as in a single component situation, the third-order correction terms are quite small (~ 5 x10^{-5} smaller compared with the relativistic/Newtonian second-order terms) due to the weak level anisotropy of the cosmic microwave background radiation. Still, there do exist pure general relativistic correction terms in third-order perturbations which could potentially become important in future development of precision cosmology. We include the cosmological constant in all our analyses.Comment: 20 pages, no figur

    On bit-commitment based quantum coin flipping

    Get PDF
    In this paper, we focus on a special framework for quantum coin flipping protocols,_bit-commitment based protocols_, within which almost all known protocols fit. We show a lower bound of 1/16 for the bias in any such protocol. We also analyse a sequence of multi-round protocol that tries to overcome the drawbacks of the previously proposed protocols, in order to lower the bias. We show an intricate cheating strategy for this sequence, which leads to a bias of 1/4. This indicates that a bias of 1/4 might be optimal in such protocols, and also demonstrates that a cleverer proof technique may be required to show this optimality.Comment: The lower bound shown in this paper is superceded by a result of Kitaev (personal communication, 2001

    Anti-Proton Evolution in Little Bangs and Big Bang

    Full text link
    The abundances of anti-protons and protons are considered within momentum-integrated Boltzmann equations describing Little Bangs, i.e., fireballs created in relativistic heavy-ion collisions. Despite of a large anti-proton annihilation cross section we find a small drop of the ratio of anti-protons to protons from 170 MeV (chemical freeze-out temperature) till 100 MeV (kinetic freeze-out temperature) for CERN-SPS and BNL-RHIC energies thus corroborating the solution of the previously exposed "ani-proton puzzle". In contrast, the Big Bang evolves so slowly that the anti-baryons are kept for a long time in equilibrium resulting in an exceedingly small fraction. The adiabatic path of cosmic matter in the phase diagram of strongly interacting matter is mapped out

    Quantum Algorithms for Learning and Testing Juntas

    Full text link
    In this article we develop quantum algorithms for learning and testing juntas, i.e. Boolean functions which depend only on an unknown set of k out of n input variables. Our aim is to develop efficient algorithms: - whose sample complexity has no dependence on n, the dimension of the domain the Boolean functions are defined over; - with no access to any classical or quantum membership ("black-box") queries. Instead, our algorithms use only classical examples generated uniformly at random and fixed quantum superpositions of such classical examples; - which require only a few quantum examples but possibly many classical random examples (which are considered quite "cheap" relative to quantum examples). Our quantum algorithms are based on a subroutine FS which enables sampling according to the Fourier spectrum of f; the FS subroutine was used in earlier work of Bshouty and Jackson on quantum learning. Our results are as follows: - We give an algorithm for testing k-juntas to accuracy ϵ\epsilon that uses O(k/ϵ)O(k/\epsilon) quantum examples. This improves on the number of examples used by the best known classical algorithm. - We establish the following lower bound: any FS-based k-junta testing algorithm requires Ω(k)\Omega(\sqrt{k}) queries. - We give an algorithm for learning kk-juntas to accuracy ϵ\epsilon that uses O(ϵ1klogk)O(\epsilon^{-1} k\log k) quantum examples and O(2klog(1/ϵ))O(2^k \log(1/\epsilon)) random examples. We show that this learning algorithms is close to optimal by giving a related lower bound.Comment: 15 pages, 1 figure. Uses synttree package. To appear in Quantum Information Processin
    corecore